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1.0 INTRODUCTION 

Modern structural design philosophies rely on the inelastic response of structures for resisting 
earthquake ground motion. Seismological technology coupled with the frequent occurrence of 
crustal earthquakes has resulted in robust databases of crustal ground motions. The majority of 
earthquake studies have utilized crustal earthquakes for this reason. Subduction zone events, 
however, possess distinct differences in magnitude, duration, and frequency content compared to 
those of crustal earthquakes. Understanding how these differences affect structures is paramount 
to furthering the development of engineering practices. Recent subduction events and 
seismological evidence have brought to the forefront the importance of this to the area of the 
Pacific Northwest near the Cascadia subduction zone. 

The Cascadia subduction zone is the over 1000km long boundary between the Juan de Fuca and 
North American plates. Geological evidence has shown that 13 significant earthquake events 
have occurred in the past 3000 years (Goldfinger et al. 2008). The most notable of which, the 
M9.0 earthquake of 1700, produced a tsunami large enough to reach Japan (Atwater et al. 2005). 
Historical evidence combined with comparisons of the Cascadia fault to other subduction zones 
has led geologists to conclude that a megathrust earthquake in the Cascadia subduction zone is 
impending (Heaton and Kanamori 1984). This creates an even greater need for the more 
thorough understanding of the differences in structural response resulting from large subduction 
zone earthquakes, and consequently plan retrofit measures to mitigate the potential damage that 
these type of earthquakes poses in RC bridges. 

Inelastic response of structures underlies most modern seismic design codes. Several studies 
involving analysis of inelastic structural demands of earthquakes have been conducted utilizing 
primarily crustal earthquakes (Krawinkler et al. 2003), (Ibarra et al. 2005a), (Ruiz-Garcia and 
Miranda 2003), (Ruiz-Garcia and Miranda 2007). Extending this research to large magnitude 
long duration subduction zone earthquakes has been limited by the availability of recorded 
ground motions as such earthquakes occur with less frequency than crustal earthquakes. Studies 
have been conducted with the few available ground motions (Stapleton et al. 2005), and several 
attenuation relationships have been developed (Atkinson and Boore 2003), (Gregor, et al. 2002) 
in order to study the effects of such earthquakes. Each approach has limitations affecting the 
broader applicability of the results. Using a small set of ground motions produces specific results 
that can not necessarily be extended to subduction zone earthquakes in general. Attenuation 
relationships often involve scaling procedures, which do not sufficiently account for regional 
variations and have been shown to produce biased results (Luco and Bazzurro 2007). Compiling 
a reasonable quantity of large motion subduction zone records was, therefore, desirable to 
produce results that could be more generalized. 

This study differed from previous similar research through both the ground motions and the 
methodology used to study the response. Recent seismic events, specifically the 2011 Tohoku 
earthquake and the 2010 Maule earthquake, have increased the quantity and availability of long 
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duration, large magnitude subduction zone ground motions to the extent that such a study was 
possible.  

In Chapter 2 strong motion data from subduction zone earthquakes is analyzed through a 
constant ductility approach. This approach was utilized to determine inelastic demand 
differences among sets of earthquakes for different SDOF systems, and a metric was developed 
by which expected damage was quantified by taking into account the duration of the earthquake. 

Capturing the mega subduction effect is of vital importance in the assessment of RC bridge 
columns located in the Pacific Northwest coast of the United States which lies near the Cascadia 
subduction zone and where a mega thrust earthquake of long duration forms a major component 
of the seismic risk. Results summarized in Chapter 3 aim to advance the seismic assessment of 
reinforced concrete bridge columns subjected to subduction zone earthquakes of long duration by 
developing a rational quasi-static loading protocol capable of simulating the demands imposed 
on bridge structures.  

Chapter 4 presents numerical and experimental results of seismically deficient square reinforced 
concrete columns constructed before 1971 in the State of Oregon. These columns are commonly 
deficient in flexural ductility and shear strength as bridges were designed primarily for gravity 
loads without much consideration to lateral forces from seismic loading. The effect of long 
duration loading protocol on columns response was investigated. 

Many bridges built before 1970 in the state of Oregon are seismically deficient. This 
vulnerability of pre-1970 bridges in the United States was especially evident in the 1971 San 
Fernando, 1989 Loma Prieta earthquake, and the 1994 Northridge earthquake. Further, the recent 
occurrence of subduction zone mega earthquakes in Chile and Japan has demonstrated how 
vulnerable RC bridges are when subjected to major seismic events. For that reason, improving 
the seismic capacity of deficient bridges have become a subject of paramount importance in 
seismic regions around the world. The main goal of any seismic retrofit measure is to minimize 
structural collapse, while meeting certain performance requirements. Nowadays, the number of 
available retrofit measures has increased markedly as a result of extensive analytical and 
experimental studies. In Chapter 5 conventional and emerging retrofit measures capable of 
improving the seismic resistance of deficient RC bridge substructures. 

Seismic retrofit implementation in the State of Oregon has been minimal due to a lack of 
funding, and when retrofits have occurred, the scope was typically limited to retrofit by 
providing restrainers for keeping the superstructure from sliding from the supports. Such retrofit 
measures are effective for their intended purpose, but shift the displacement demands onto the 
supporting substructure. Designs for strengthening substructure elements for earthquake 
resistance are typically based on conditions in California, which typically has round bridge 
columns exposed to crustal seismic events. Oregon has many bridges with reinforced concrete 
bents and slender rectangular and round columns with inadequate reinforcement. Current seismic 
retrofitting manuals and guidelines for existing highway structures in Oregon are based on a 
performance-based design methodology, which uses a multiple-level approach to performance 
criteria with two seismic hazard levels. Therefore, engineers designing retrofit measures for 
improving the seismic resistance of standard existing bridge substructures need to ensure that the 
structure remains operational under a moderate earthquake and that life safety is preserved after a 
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large earthquake. From the multiple retrofit alternatives presented in Chapter 5, in Chapter 6 is 
presented the option of using sacrificial elements also referred to as structural fuses as a retrofit 
measure for reinforced concrete bridges. Chapter 6 also presents the design implementation of 
these structural fuses for retrofitting RC bridge bents. 

The actual implementation and response of RC bridge bents retrofitted by using buckling 
restrained braces are investigated in Chapter 7 via numerical and experimental studies. In that 
chapter a representative multi-column RC bridge bent is selected, assessed and retrofitted. 
Additionally, a half-scale RC bridge bent is tested using cyclic loading protocols that aim to 
represent displacement demands imposed in bridges by subduction zone mega earthquakes. The 
retrofit strategy presented in this study have the potential to improve the overall seismic behavior 
of RC bridges. 

Analytical and experimental methods used to study typical vulnerable bents in Chapter 7 are 
used to quantify the seismic performance of the as-built and retrofitted bent with fragility curves. 
Chapter 8 presents the fragility curves for the as-built and retrofitted condition of the 
representative bridge bent. Thus, the effects of subduction zone earthquakes and retrofit 
measures can be better understood.
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2.0 INELASTIC STRUCTURAL RESPONSE TO SUBDUCTION 
ZONE EARTHQUAKES 

2.1 GENERAL 

Large magnitude megathrust subduction zone earthquakes are recognized to display distinct 
differences in acceleration magnitude, shaking duration and geographic region affected as 
compared to crustal earthquakes. Understanding the structural response differences to such 
earthquakes is paramount to furthering the development of engineering practices, particularly for 
affected regions such as the Pacific Northwest located near the Cascadia subduction zone. The 
Cascadia subduction zone is the over 1000km long boundary between the Juan de Fuca and 
North American plates. Geological evidence has shown that 13 significant earthquakes have 
occurred in the past 3000 years (Goldfinger et al. 2008). The most notable of which, the M9.0 
earthquake of 1700, produced a tsunami large enough to reach Japan (Atwater et al. 2005). 
Historical evidence combined with comparisons of the Cascadia fault to other subduction zones 
has led geologists to conclude that a megathrust earthquake in the Cascadia subduction zone is 
impending (Heaton and Kanamori 1984). 

Due to the lack of available large magnitude subduction zone ground motion records, researchers 
wishing to analyze the structural demands of such earthquakes had in the past needed to resort to 
available records of smaller accelerations, conduct studies with the few ground motions, or 
utilized simulated records. Both simulated records and the use of attenuation relationships 
required ground motions to be scaled, which has the potential to produce biased results (Luco 
and Bazzurro 2007). Atkinson and Boore (Atkinson and Boore 2003) also stated that an 
earthquake of magnitude 8.0 or greater would result in a significant hazard increase compared to 
ground motions of lower magnitude, indicating the need for a study of the specific structural 
effects of large magnitude earthquake events. With the recent occurrences of the 2011 Tohoku, 
Japan (M9.0) and 2010 Maule, Chile (M8.8) earthquakes, the quantity of large magnitude 
subduction zone records increased to the extent that a study could be performed using recorded 
time history accelerations and thereby removing the bias caused by scaled or simulated records. 
Structural demand requirements produced by the Tohoku and Maule earthquakes do not 
necessarily directly extend to the Cascadia subduction zone, but by analyzing the demands, 
knowledge of the potential differences between Cascadia and crustal earthquakes can begin to be 
compiled. 

This chapter outlines the method and results of numerical analyses utilizing a constant ductility 
approach that has the advantage of utilizing the strong motion records without the necessity of 
scaling. The responses of ductile single degree of freedom systems exhibiting bilinear or 
degrading hysteretic behavior were analyzed over a wide range of structural periods. The 
responses from subduction zone records were contrasted with results from representative crustal 
records and show that under the same maximum ductility, the cumulative plastic displacement 
demands can be two to three times that of crustal records for short to medium period structures. 
These findings could have impact on the damage expectations and on the evaluation criteria of 
bridge substructures following subduction zone earthquakes. 
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2.2 GROUND MOTION SELECTION 

The selection of ground motions was made with the aim of producing results of broad 
applicability. Ground motions were then compiled into sets for ease of comparison. These 
consisted of a representative crustal set and three subduction zone sets: two from the 2011 
Tohoku earthquake and one from the 2010 Maule earthquake. Determining the different effects 
of near field and far field ground motions was beyond the scope of this study, so each set utilized 
only far-field records. This distinction further maintained the relevancy of this study to the 
Cascadia subduction zone, as the fault li1es many miles from the Pacific Northwest coast. 

 
2.2.1 Representative Crustal Earthquake Set 

Crustal earthquake selection criteria and the uses of earthquake sets have varied among previous 
researchers. Krawinkler et al. (Krawinkler et al. 2003) studied the dependence of drift and 
ductility demands on ground motions and the relationships of the parameters to ground motion 
intensity measures. A set of 80 ordinary (not near-fault) ground motions from the PEER NGA 
database were compiled and divided into four bins according to magnitude and distance from the 
fault. The Large Magnitude-Short Distance (LMSR) bin caused the most critical structural 
response and was therefore utilized in subsequent studies which required a representative set of 
ordinary ground motion records. This included the work of Richards et al. (Richards et al. 2006) 
for the development of cyclic loading and testing protocol for eccentrically braced frames. 
LMSR earthquakes were defined as those with moment magnitude between 6.5 and 7.0 and 
distance from fault between 13km and 30km and included 20 records. 

Medina and Krawinkler (Medina and Krawinkler 2003) determined the need to expand the 
number of records in the LMSR bin for statistical purposes to further quantify the dependence of 
seismic demands on ground motions. This expanded LMSR-N set was also used in further 
studies. One study analyzed the variance of collapse capacity of SDOF systems under earthquake 
excitations (Ibarra et al. 2011), while another demonstrated that deteriorating hysteretic models 
provide increased versatility and more realistic results for analyzing inelastic systems (Ibarra et 
al. 2005a). The LMSR-N record set consisted of 40 records and extended the distance 
requirement to include records up to 40km from the fault. Both LSMR and LSMR-N records sets 
were limited to those earthquakes that originated from strike-slip, reverse-slip, or reverse oblique 
fault mechanisms, were recorded at Site Class D locations, and had high-pass frequency content 
less than 0.2 Hz. No aftershocks were considered, but multiple records per event were included. 

FEMA 695 (FEMA 695 2009) outlined an additional representative set of crustal earthquake 
ground motions from the PEER NGA database. The distinction between near-field and far-field 
records was again recognized. Selection criteria for the far-field record set were similar to that of 
the LSMR record set. The set contained 22 records that had moment magnitude greater than 6.5, 
were 10km or greater from the fault, were recorded at locations of site class C or D, and 
originated from strike-slip or reverse fault mechanisms. Additionally, only records from 
recording equipment located free-field or the ground floor or basement of a small building were 
considered. Arbitrary limits of 0.2g minimum PGA and 15 cm/s minimum PGV were imposed, 
and only the two records with the highest PGV per event were chosen. 
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The FEMA far-field record set was similar to the previously used LSMR record set, but included 
a greater variety of events. As the set was also included as part of a procedure that is likely to be 
extensively used in structural system evaluations in the future, the FEMA far-field set was 
chosen as the representative crustal ground motion set in this study, and will be referred to as the 
Crustal set. The 22 ground motions along with their general characteristic and elastic response 
spectra can be found in Appendix A and Figure 2.1. 

2.2.2 Subduction Zone Earthquake Sets 

Prior to the recent events in Chile and Japan, there was a significant lack of large magnitude long 
duration subduction zone ground motion data. In order to study subduction zone affects, previous 
researchers utilized what records were available, modified records using attenuation 
relationships, or used simulated records. 

Stapleton et al. (Stapleton et al. 2005) performed time history analyses of reinforced concrete 
columns by modifying the Llolleo, Chile 1985 (M 7.9) and Moquegua, Peru 2001 (M 8.4) 
earthquakes to fit a target acceleration spectrum for the Puget Sound region on the basis of an 
attenuation relationship developed by Atkinson and Boore (Atkinson and Boore 2003). 
Thompson (Thompson 2004) included the same generated earthquakes in a data set used for a 
corresponding numerical study. The data set totaled 10 ground motions, 6 of which were long 
duration records, and of those 4 were modified either through the attenuation relationship 
mentioned above or to fit an acceleration spectrum representative of the Seattle area. 

Atkinson and Boore (Atkinson and Boore 2003) compiled an extensive subduction zone database 
including records from Mexico, Japan, and Central America of M 5 – M 8.3. Though the 
quantity of earthquakes was significant, the majority were of relatively smaller magnitude. The 
database was used to develop attenuation relationships using a maximum likelihood regression 
method. A previous attenuation relationship used a stochastic finite-fault ground motion model 
and a less extensive record database to produce relationships specific to the Cascadia subduction 
zone (Gregor et al. 2002). This model was validated using the 1985 Miochoacan, Mexico (M 
8.0) and 1985 Valpariso, Chile (M 8.0) earthquakes. Atkinson and Boore concluded that 
regression equations based on a global database did not sufficiently account for regional 
variability of ground motion amplitudes. Amplitude differences in Japan and Cascadia for events 
of the same characteristics were especially apparent. Results also indicated that the hazard 
produced by a M >8 earthquake would be significantly larger in terms of area experiencing 
damaging levels of ground motion than the hazard produced by a large in-slab event, suggesting 
the need for analysis of the effects of earthquakes of M>8. 

A simulated earthquake for a Cascadia subduction zone event was developed by Yang (Yang 
2009). This model utilized the empirical Green’s function approach to produce a scenario 
Cascadia earthquake (M 9.2) using source parameters from the 2004 Sumatra-Andaman (M 9.2) 
earthquake. The 2003 Tokachi-Oki (M 8.1) earthquake was used as empirical Green’s functions 
to simulate the ground motions. However, uncertainties in Cascadia site conditions compared to 
those in Japan produced large variations in the resulting equations, making the use of simulated 
ground motions undesirable when recorded motions are available. 
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Japanese earthquakes were also used by Goda and Atkinson (Goda and Atkinson 2009) and Bai 
et al. (Bai et al. 2012). Goda and Atkinson (Goda and Atkinson 2009) studied the probabilistic 
distribution of the peak ductility demand of SDOF systems. Interface records were observed to 
vary significantly from inslab and crustal records. Large magnitude earthquakes were also shown 
to somewhat affect the distribution and suggested that even larger magnitude earthquakes than 
those used in the study (M≤8.3) could cause significant differences in inelastic demand. Bai et al. 
(Bai et al. 2012) considered larger magnitude earthquakes from the 2011 Tohoku event. A total 
of 6 ground motions, 3 from the Tohoku event and 3 simulated, were used to investigate the 
seismic demands of high-rise buildings models. The models were shown to not satisfy seismic 
demand under extreme ground motions. 

Subduction zone ground motion sets used in this study were chosen with the intention of 
reducing the less desirable effects of ground motion selection in addition to focusing specifically 
on the effects of large magnitude subduction zone events compared to crustal events. The 
availability of ground motion data from the Tohoku and Maule events allowed for separate sets 
of records to be compiled. By not scaling or utilizing attenuation relationships, the earthquake 
characteristics were preserved. As each event had M≥8.8, the records used did not appear in the 
database compiled by Atkinson and Boore (Atkinson and Boore 2003) or Goda and Atkinson 
(Goda and Atkinson 2009). This also allowed for the potential hazard resulting from a 
megathrust earthquake to be analyzed specifically. The two subduction events were similar in 
terms of magnitude, distance, and site classification as shown in Table 11, but records from the 
two events were analyzed separately in order to observe any potential differences caused by 
variations in regional site characteristics and soil profile that were not captured by the site 
classification procedure. The compiled record sets are also more extensive than those used by 
Stapleton el at. (Stapleton et al. 2005), Thompson (Thompson 2004), and Bai el al. (Bai et al. 
2012) and can be considered to produce more statistically significant outcomes.  

Due to the large amount of data available from the Tohoku earthquake on the Kyoshin Network 
(K-Net) database, the Tohoku records were further divided into two sets. The first contained 
records with PGA between 0.2g and 0.9g, while the second contained records with PGA greater 
than 0.9g, referred to as Tohoku2 and Tohoku1 sets, respectively. The PGA range for the 
Tohoku2 record set was chosen to produce a set with a similar PGA range and elastic 
acceleration spectral shape to the crustal and Maule sets. PGA ranged from 0.13g to 0.93g for the 
Maule set and 0.21g to 0.82g for the crustal set. Because the Tohoku2 set contained records with 
much higher PGA than the other sets, this set was kept separate in order to isolate the effects of 
records with larger PGA on the resulting structural demands. This difference in PGA range was 
also reflected in the shape of the elastic acceleration spectra shown in Figure 2.1. 

The Tohoku2 record set contained components from 100 ground motions, while Tohoku1 
contained 16 and Maule 19. The differing quantities of records directly reflect the availability of 
records from each earthquake. As the focus of this research was not to develop new criterion for 
selecting records, all available records available from the K-Net database in the determined PGA 
range were included. Additional records from the Tohoku earthquake were available from the 
Kiban-Kyoshin Network (Kik-Net) database, but as the two networks covered a similar 
geographical area, using only ground motions from the K-Net database was deemed appropriate. 
Two additional ground motions were also available from the Maule earthquake, but were not 
included as the PGA of each was orders of magnitude lower than the average PGA of the set. 



 

9 

Earthquakes ground motions from the Maule earthquake were available via the Department of 
Civil Engineering at the University of Chile.  

The disparity in the quantity of ground motions between the Tohoku2 and Maule sets was also 
addressed by selecting records from among the Tohoku2 set to form a subset of 19 records, 
referred to as the Tohoku2S set. No rigorous process was involved in the selection of Tohoku2S. 
The records were chosen simply to produce a subset with a similar PGA range and mean as the 
full set. Analyzing the structural response differences between the full set and the subset could 
give an indication as to the quantity of records necessary to produce confidence in the results, 
particularly when all of the ground motions in question are from one earthquake event. Elastic 
acceleration response spectra and record set characteristics are shown in Figure 2.1 and 
Appendix A-1. 

In each of the record sets, two horizontal component records were used for each ground motion. 
Vertical components were not used. For the purposes of this study, component records were not 
rotated or combined, but treated as two separate ground motions. Imposed criteria for both the 
representative crustal and Tohoku sets were based on the component record that contained the 
higher PGA for each event, but each component were used in analysis regardless of PGA. This 
reflected the selection and analysis methods employed by the procedure set forth in FEMA 695 
(FEMA 695 2009). Ground motions were also corrected prior to being used in this study. 
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Figure 2.1: Elastic Acceleration Response Spectra 
 
 

 
2.2.3 Removing Outlying Records 

Evaluation of the elastic response spectra of each record set led to the observation that each set 
contained records that fell well above the mean at some point in the spectra. In order to avoid 
any potential skewing of the results, the outliers were removed. Common statistical methods of 
removing the outliers of a set do not apply when the set contains a series of spectra, rather than a 
series of single data points. A simple method was employed instead. Each component record that 
exceeded three standard deviations above the mean at more than one point of the elastic spectra 
was removed. Components that exceeded three standard deviations over the mean exactly once 
were not considered outliers. This was due to the fact that the spectra were calculated at small 
period steps of 0.02s. Records exceeding the limit only once at small period steps would most 
likely not exceed the limit if spectra were calculated at larger period steps, so exceeding the limit 
only once was not considered to be indicative of an outlying record. This effectively removed 7 
components from the crustal set, 7 from the Maule set, 28 from the Tohoku2 set, 6 from the 
Tohoku2S set, and 5 from the Tohoku1 set. Outlying records were not included in Appendix    
A-1. Individual records for the Tohoku2 set were also not included, as the Tohoku2S set was 
considered to be representative of both sets. 

a.) Tohoku1 b.) Tohoku2 

c.) Maule 
d.) Crustal 
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2.3 NUMBERICAL REPRESENTATION OF STRUCTURAL 
BEKHAVIOR 

Representing structural behavior by single degree of freedom (SDOF) systems is a common 
analysis tool. Current code allows for the approximation of structures by SDOF systems, and 
utilizing SDOF systems maintains non-structure specific applicability. Analysis and computation 
time and complexity are also greatly reduced. In order to analyze the inelastic demands of 
various types of earthquakes, three SDOF systems were used. 

Researchers have developed a variety of hysteretic models in order to produce representative 
results for a desired material behavior. Typically, a simple bilinear model was used and 
compared to more complex models. Such models included peak-oriented (Clough and Jonhnston 
1966), pinching, and Bouc-Wen (Wen 1976) models. A CUREE study of wood frame structures, 
for example, utilized bilinear, peak-oriented, and pinching models (Krawinkler et al. 2002). 

Rahnama and Krawinkler (Rahnama and Krawinkler 1993) developed hysteretic models that 
incorporated multilinear load-deformation response, strain hardening, stiffness degradation, 
strength degradation, and pinching characteristics. Peak oriented and pinching models were 
developed along with a deterioration factor. The deterioration factor was used to describe any 
combination of strength deterioration, degradation of unloading stiffness, and accelerated 
degradation of loading stiffness in the developed models.  

More recently Ibarra et al. (Ibarra et al. 2005) developed a different strength and stiffness 
deteriorating hysteretic model. Basic strength, post capping strength, unloading stiffness and 
reloading stiffness cyclic deterioration modes were investigated. The proposed model expressed 
all cyclic deterioration modes by a single parameter and included a backbone curve with negative 
post-capping tangent stiffness, which was not included in the Rahnama and Krawinkler 
(Rahnama and Krawinkler 1993) model. This model maintained both simplicity and versatility. 
Ibarra et al. further concluded that using a model that included strength and stiffness degradation 
in an inelastic analysis process resulted in more accurate results. 

This study utilized a bilinear model, an elastic non-linear model, and the peak oriented Ibarra-
Krawinkler deterioration model (Ibarra et al. 2005). Each SDOF system was defined as a zero 
length element which utilized uniaxial material types available in OpenSees (OpenSees 2011). 
Both the bilinear and elastic non-linear models included 5% post yield stiffness, and the Ibarra-
Krawinkler model was calibrated based on the ductile moment frame model 3a used in FEMA 
440A (FEMA 440A 2009). 

FEMA 440A defined the model as points on a force deformation capacity boundary in terms of 
normalized force and drift. Drift was modified to normalized deformation in order to use the 
model as a zero length element, and the residual strength was adjusted to be 80% of the yield 
strength. The FEMA model represented structures of ductility level 8, so this was scaled to 
produce additional capacity boundaries for structures of ductility levels 2 and 4. When scaling, 
the stiffness of each leg of the capacity boundary was kept constant for ductility level 4, but this 
was not possible for ductility level 2. The pre-capping leg was omitted and the post-capping 
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 stiffness was increased slightly in order to maintain the strength reducing and residual strength 
portions of the hysteresis. Hysteretic shapes for each model are shown in Figure 2.2. Appendix 
A-2 and A-3 show the procedure used for numerical analysis and parameter for each hysteretic 
model, respectively. 

 

 

Figure 2.2: Hysteretic Behavior of SDOF Systems 

The models were chosen and developed to be analyzed over a range of periods and ductility 
levels in order to represent a wide variety of structures. Steel component behavior was 
represented by the bilinear model, while the degrading model represented both reinforced 
concrete and ductile moment frame behaviors. The elastic nonlinear model was included to 
represent structures that display rocking behavior during earthquakes, as the benefits of utilizing 
rocking motion in structures are becoming more widely acknowledged and understood. To 
simplify the following explanation of results, the nonlinear behavior of elastic nonlinear model 
will be referred to as “plastic” behavior. 

2.4 INELASTIC RESPONSE DEMAND 

Researchers have generally used one of two methods to analyze structural systems for seismic 
demand: a constant strength approach or a constant ductility approach. In each approach, 
structures are commonly approximated as inelastic SDOF systems. The constant strength 
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approach assigns known strengths to the system to solve for the peak ductility demand, while the 
constant ductility approach finds the yield strength that produces a desired peak ductility value. 
Each approach produces the desired seismic demand of a structure over a range of natural 
periods and as a result of multiple earthquake ground motions. 

The constant strength approach determines inelastic displacement demands probabilistically. 
Methods have been developed to analyze the ductility demand of existing structures (Ruiz-
Garcia and Miranda 2003), as well as structures which display Bouc-Wen hysteretic behavior 
(Goda et al. 2009). This has also been used as a means of estimating maximum inelastic 
displacement demand as a part of performance-based design (Ruiz-Garcia and Miranda 2007). A 
constant strength approach was further used as mechanism for determining the sensitivity of 
inelastic SDOF systems to the orientation of input ground motions (Goda 2012). In each study, 
ground motions were scaled to produce a constant seismic excitation relative to the yield strength 
of the structure. The advantage of this approach is the applicability to existing structures. Luco 
and Bazurro (Luco and Bazurro 2007) have demonstrated that scaling of ground motion records 
can produce biased results. As the focus of this study was to determine the effects of different 
types of ground motions, analysis procedures that called for scaling of ground motions were 
avoided. 

The constant ductility analysis procedure used in this study was closely related to the inelastic 
response spectra procedure used by Murukami and Penzien (Murukami and Penzien 1975). Time 
history analysis of each of SDOF systems over a range of natural periods up to 4s at 0.02s 
increments was conducted with each of the earthquake ground motions using OpenSees 
(OpenSees 2011). Due to numerical computation issues at very small periods, analysis of the 
degrading model began at 0.1s. At each period and for each earthquake record, the yield strength 
of the structure that produced the desired ductility value was found through an iterative process, 
in effect having an individual ductility design for each of the earthquake records. Krawinkler and 
Nassar (Krawinkler and Nassar 1990) referred to this type of spectra as strength demand spectra. 
Miranda (Miranda 1993) conducted a similar evaluation of site-dependent inelastic seismic 
demand spectra. Rahnama and Krawinkler (Rahnama and Krawinkler 1993) expanded the 
approach to determine the effects of soft soils and hysteresis models on strength demand. The 
ductility, µ, was defined as 

y

m




 
 (2-1) 

Where, δm is the max displacement and δy is the yield displacement. Inelastic responses were 
calculated at ductility values of 2, 4, and 8 as this was considered to represent a wide range of 
ductile structural responses. Throughout the process, mass of the system remained constant, 
while the stiffness, k, was calculated based on the desired period. Yield force was represented by 
fy. 

Resulting inelastic acceleration spectra were analyzed by comparing the mean of each record set 
for each model. Spectra were found to differ very little between models, so only the results of the 
bilinear model are shown in Figure 2.3. An example of how the models compare is also shown 
for the Maule set at ductility 2.  For this and the presentation of the majority of the results, the 
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Tohoku2S set was omitted, as providing results for both the Tohoku2 and Tohoku2S sets was 
redundant. An isolated comparison of the two sets follows. The mean of the Tohoku1 response 
was consistently higher than the other record sets, which was a direct reflection of the higher 
acceleration content of that set. The Tohoku2, Maule, and Crustal sets, however, resulted in very 
similar values despite the differences in fault type and magnitude of the earthquake events. 

 

 

Figure 2.3: Mean Inelastic Acceleration Response Spectra 

2.5 CUMULATIVE PLASTIC DISPLACEMENT DEMAND 

Force based seismic design is evolving towards displacement based design from the research 
realm to practice, whereby a number of states including Oregon have adopted Guide 
Specifications (AASHTO 2009) to more appropriately capture the structural behavior. Hence, a 
displacement based metric was needed to compare the seismic demand between record sets that 
would take into account the longer duration of subduction zone records and allow for comparison 
between ground motions of various magnitudes and spectral acceleration contents. This was 
achieved by calculating the cumulative plastic displacement demand over the duration of the 
response. 

To calculate cumulative plastic displacement, elastic displacement was first removed from the 
total displacement leaving only the plastic displacement, up, at each time increment of the 
analysis, “i”. Adding the incremental differences of plastic deformation produced the cumulative 
plastic displacement, Up, for each earthquake record at each structural period as 

d.) Tohoku1c.) Tohoku2 

b.) Maulea.) Crustal 
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Normalizing this value by the yield displacement at each period produced a unitless metric by 
which the seismic demand of earthquakes of different types and magnitudes could be compared 
among different systems. Since the structures were designed to a set ductility value, i.e. to a 
specific inelastic displacement demand, the differences in the normalized cumulative plastic 
displacement (NCPD) indicate the amount of plastic demand imposed. The results can be 
presented for each earthquake by plotting the data over the period range at each ductility value. 
These plots are referred to as normalized cumulative plastic displacement spectra. 

Resulting plastic displacement demand varied among models as illustrated in Figure 2.4 and 
Figure 2.5. Different trends were also apparent for higher and lower periods, particularly for the 
bilinear and degrading models. For the bilinear model, at periods of less than 0.5s, higher 
demands were produced by the Tohoku1 and Maule sets than the Tohoku2 set when compared to 
the Crustal set. At the peak of the Crustal demand, the Tohoku1 and Maule sets resulted in an 
average of 20% and 40% more demand, respectively. This means that for lower period bilinear 
structures designed to the same ductility, the Tokoku2 and Maule earthquakes accumulated 
noticeably more plastic deformation. 

At periods higher than approximately 1.0s, both Tohoku sets produced lower normalized 
cumulative displacement demand than the Crustal set. This difference increased as the period 
increased and was more pronounced at higher ductility values. For the analysis period of 4.0s, 
the mean NCPD produced by the Tohoku1 set was 41%, 49%, and 58% less than that of the 
Crustal set for ductility values 2, 4, and 8, respectively. Despite the differences in spectral 
acceleration content, the mean NCPD demand of the Tohoku sets remained within approximately 
18% of each other for all ductility values. This means that despite the longer duration of the 
records, the accumulated plastic deformation was significantly less for the Tohoku sets than the 
Crustal set for high period structures. Conversely, the Maule set produced more demand than the 
Crustal set at higher periods. Again, an increase in demand was seen as the ductility increased 
with the Maule set producing 26%, 55%, and 62% more demand than the Crustal set at 
increasing ductility levels. The contrasting behavior of the Maule and Tohoku sets was notable, 
because the results were not what would be expected based on commonly used intensity measure 
such as acceleration spectra and magnitude. 

In contrast to the bilinear model, the elastic nonlinear model did not result in significant trend 
differences among higher and lower period structures. All subduction sets produced consistently 
higher demand than the Crustal set. At both the peak of the Crustal demand and at the 4.0s 
analysis period, subduction sets averaged approximately 60%, 120%, and 170% higher demand 
at increasing ductility levels. All structures with this type of behavior over the range of periods 
analyzed accumulated significantly more damage due to subduction earthquakes than crustal 
earthquakes. The degree to which damage accumulated was also orders of magnitude higher for 
the elastic nonlinear model than for the bilinear model for structures designed to the same levels 
of ductility ranging from approximately 3 to 10 times more demand at the peak of the mean 
Crustal response. 
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The NCPD spectra for the degrading model displayed a different spectral shape than the previous 
models and the produced plastic displacement demand was orders of magnitude higher than that 
of the elastic nonlinear model at lower periods. The trend differences between higher and lower 
period structures that were seen in the bilinear model were seen in the degrading model, though 
the trends were more apparent as ductility increased and the transition between lower and higher 
period effects was not as clear. In this case, all subduction zone sets produced more NCPD 
demand than the Crustal set for lower period structures, whereas the Tohoku2 set of the bilinear 
model tracked more closely to the Crustal set. At the peak of the NCPD response, all subduction 
sets produced over 200% more demand than the Crustal set. The largest differences in demand 
produced by the degrading and elastic nonlinear models occurred at ductility 2 where the demand 
of the degrading model was approximately 3 to 6 times greater than the elastic nonlinear model 
and fell to approximately 1.3 to 2.0 times greater at ductility 8.  

The transition to higher period effects occurred at a lower period as ductility increased, but 
generalizations could be made about the behavior of structures higher than approximately 2s. As 
with the bilinear model, the demand produced by the Tohoku sets of the degrading model was 
significantly less than that of the Maule set, around 40% to 80%. All subduction sets produced 
higher demand than the Crustal set, but particularly for the higher period structures designed to 
higher levels of ductility the difference in demand produced by the Tohoku and Crustal sets was 
negligible. Generally, the demand produced by the degrading model at higher periods was of 
similar magnitude to that produced by the elastic nonlinear model.  

The elastic nonlinear and degrading models further confirmed that lower period structures are 
likely to be susceptible to increased demands due to subduction zone earthquakes. The degree of 
damage seemed to be dependent on the behavior of the structure and was more apparent when 
strength and stiffness degradation occurred. Among higher period structured, the Maule set 
produced at least as much demand as the Tohoku sets, in most cases more. Based on the 
magnitude and acceleration spectra of each set, the most demand would be expected to result 
from the Tohoku1 set. The cumulative plastic displacement metric, therefore, captures structural 
damage that was not possible with acceleration spectra. 

Hysteretic behavior of each model can be used to explain the magnitude of demand differences 
displayed above. As an example, the normalized force displacement curves for one Maule 
earthquake designed to a 0.5s period and ductility of 2 are shown in Figure 2.6. The elastic 
behavior of the bilinear model can be clearly seen as each segment that is parallel to the initial 
stiffness. Cumulative displacement was higher for the elastic nonlinear model, because with each 
excursion that caused the structure to change from plastic displacement in one direction to the 
other direction the elastic nonlinear model had to backtrack through a certain amount of “plastic” 
deformation before reaching the elastic region again. The bilinear model, in contrast, was able to 
move into an elastic region as soon as the displacement became small enough. 

The even larger plastic displacement of the degrading model was an effect of the reloading 
stiffness degradation. In each cycle, the structure behaved plastically between the yield point and 
the beginning of unloading, behaved elastically during unloading, but moved back into the 
plastic region during reloading due to the reduction in reloading stiffness that is characteristic of 
pinching behavior. This additional plastic portion of the hysteresis can explain the higher 
cumulative plastic displacement demand of the degrading model. 
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Figure 2.4: Mean NCPD Spectra: Bilinear and Degrading Models 
 

a.) Bilinear, Ductility 2 

d.) Bilinear, Ductility 4 

g.) Bilinear, Ductility 8 

b.) Bilinear No 
Hardening, Ductility 2

e.) Bilinear No 
Hardening, Ductility 4

h.) Bilinear No 
Hardening, Ductility 8

c.) Degrading, Ductility 2

f.) Degrading, Ductility 4

i.) Degrading, Ductility 8
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Figure 2.5: Mean NCPD Spectra: Elastic Nonlinear Model 

 

a.) Elastic Nonlinear, Ductility 2

c.) Elastic Nonlinear, Ductility 4

e.) Elastic Nonlinear, Ductility 8

b.) Elastic Nonlinear No 
Hardening, Ductility 2 

d.) Elastic Nonlinear No 
Hardening, Ductility 4 

f.) Elastic Nonlinear No 
Hardening, Ductility 8 
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Figure 2.6: Example Maule Hysteresis, T = 0.5s, Ductility 2 

2.5.1 Hardening Effects 

Both the elastic nonlinear and bilinear models were also analyzed without any post yield 
hardening. Because results were similar to those of the hardening counterparts, the full results 
were not included or discussed. However, an interesting effect was noticed. The trends for each 
model with and without hardening were very similar, including period effects and differences 
among ductility levels. In the case of the elastic nonlinear model, the difference in the magnitude 
of the demand with and without hardening was negligible. The magnitude of the demand of the 
bilinear model, however, was higher when hardening was not included on the order of 
approximately 25% to 80%. Lower displacement demand is to be expected when hardening is 
introduced. The fact that this difference was only seen in the bilinear model suggests hysteretic 
damping is necessary for hardening to affect cumulative displacement demand. 

2.6 RESIDUAL DISPLACEMENT DEMAND 

Residual displacement was presented as an additional response metric. Because this was not a 
cumulative response metric, comparing the resulting trends led to conclusions about the 
importance of accounting for cumulative demands. This metric was calculated in a similar 
manner to NCPD. At each period of each SDOF system, the residual displacement was defined 
as the final displacement of each time history analysis. This value was then normalized by the 
yield displacement at that period of the system and presented as normalized residual 
displacement (NRD) spectra over the period range.  

Similarly to inelastic acceleration response demand, the residual displacement demand did not 
appreciably vary among models. Results are shown only for the bilinear model in Figure 2.7 with 
a comparison among the models for the Maule set at ductility 2. For each level of ductility, the 
Tohoku sets resulted in higher residual displacement than the Maule and Crustal sets. 
Furthermore, the Maule and Crustal sets resulted in very similar values of residual displacement. 
This was in contrast to the NCPD trends, where the Maule set consistently produced the highest 
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cumulative displacement demand and the Tohoku2 sets produced results more similar to the 
Crustal set. The NRD results follow more closely what might be expected if PGA and 
acceleration spectra were used to predict damage. Here again, the need was apparent for a 
cumulative metric. 

 

 

Figure 2.7: Mean NRD Spectra 

2.7 DURATION METRICS 

Previous researchers have looked at duration intensity measures, but most were based on 
characteristics of the ground motions themselves rather than the response of various structures to 
those ground motions. Two commonly used duration metrics are the “Bracketed Duration”, and 
the “Normalized Arias intensity (NAI)”. The bracketed duration in this study was taken as the 
first to the last occurrence of an acceleration of 0.05g (Bolt 1969). The normalized Arias 
intensity was defined as the integral over the total record duration (tr) of the square of the 
acceleration time history as shown in Eq. (2-3) and normalized by PGA. The metrics were 
calculated and compared to the NCPD, and mean results for each set are shown in Table 2.1. The 
duration metrics would lead to similar expectations of demand as the inelastic acceleration 
content. Each indicated that the Tohoku1 would be expected to produce the highest demand. As 
this was not the case when cumulative duration was considered, the metrics are insufficient for 
capturing the expected damage due to duration effects. 

a.) Ductility 2 b.) Ductility 4 

c.) Ductility 8 d.) Maule, Ductility 2 
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Table 2.1: Mean Duration Metrics 
METRIC TOHOKU1 TOHOKU2 MAULE CRUSTAL 

Bracketed Duration (sec) 153 110 53 15 
NAI (g) 169 107 123 42 

 
2.8 COMPARISON OF TOHOKU 1 FULL SET AND SUBSET 

A subset of the Tohoku1 set was selected to represent the PGA range of the full set and 
approximate the number of earthquakes in the Maule and Crustal sets. Various results comparing 
the two sets are shown in Figure 2.8. As can be seen, the results do not considerably vary. 
Analysis was initially performed with all available ground motions in order to avoid any bias that 
might result from the method of ground motion selection. In this case, the selection process used 
to reduce the number of earthquakes in the set did not appreciably affect the results. This was 
most likely due to the fact that all ground motions under consideration were from the same 
earthquake and the reduced set maintained a statistically sufficiently large number of ground 
motions. 

 

Figure 2.8: Tohoku 1 compared to Subset 

Inelastic Spectra
Bilinear, Ductility 2

NRD Spectra 
Bilinear, Ductility 8

NCPD Spectra 
Degrading, Ductility 2

NCPD Spectra
Elastic Nonlinear, Ductility
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2.9 SUMMARY 

Observations based on this analysis can be summarized as follows: 

 For all short period (< ~0.5s) structures, subduction earthquakes produced more 
cumulative displacement than crustal earthquakes. 

 The Maule earthquake produced at least as much cumulative displacement, in most 
cases more, than the Tohoku earthquake particularly at longer periods (> ~1.0s) 
despite having shorter duration. 

 Resulting cumulative displacement did not conform to the levels of damage that 
would be expected based on other more common intensity measures including simply 
looking at earthquake record duration and response metrics. 

 Structures with hardening accumulated less displacement than structures without 
hardening, but only when hysteretic damping was also present. Hardening did not 
affect the accumulated damage in elastic nonlinear structures. 

 Reducing the number of ground motions in an analysis set from 166 to 34 did not 
appreciably alter the results, and would most likely not do so for any case where all 
ground motions are from the same earthquake source.
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3.0 CYCLIC LOADING PROTOCOL CONSIDERING 
SUBDUCTION MEGA EARTHQUAKES 

3.1 GENERAL 

All structural components have limited capacity. For that reason, understanding their behavior 
under strong ground motion excitations has always been a major objective of earthquake 
engineering. One method to assess the performance of structural components is via experimental 
evaluations utilizing quasi-static cyclic loading. The relatively slow application of the load in 
quasi-static tests allows experimentalists to relate structural metrics such as top displacement, 
chord rotation, drift, strains, etc. to visual damage of specimens (e.g. first cracking, spalling of 
the concrete, buckling of longitudinal reinforcement). Current earthquake design procedures for 
structural components have been established based on experimental results utilizing quasi-static 
cyclic tests. Moreover, design codes are trending to a relatively new design methodology called 
“Performance-based seismic design” (PBSD). In this methodology, a number of performance 
levels, which are frequently defined in terms of acceptable levels of damage, need to be satisfied 
under different levels of seismic hazards. Under this design methodology the assessment of 
different structural components plays a fundamental role.  

Numerous experimental and analytical studies have been conducted in order to assess structural 
components, define limit states and acceptance criteria to be used in performance-based seismic 
design (Hose and Seible 1999, FEMA356 2000, ASCE/SEI41-06 2007). Many protocols have 
been developed and utilized to assess structural and non-structural components, e.g. Krawinkler 
et al. (Krawinkler et al. 1983), Cheung et al. (Cheung et al. 1991), ATC-24 (ATC-24 1992), 
Krawinkler et al. (Krawinkler et al. 2000a, 2000b), Richard and Uang (Richard and Uang 2006), 
FEMA461 (FEMA461 2007), Hutchinson and Wood (Hutchinson and Wood 2013), ACI374.2R-
13 (ACI374.2R-13 2013). Despite these efforts, past loading protocol developments had not 
considered subduction ground motions because a scarcity of this type of record. However, the 
recent occurrence of highly devastating subduction megathrust earthquakes of long duration, 
2010 Maule, Chile and 2011 Tohoku, Japan, have raised researchers’ interest in how earthquake 
duration and number of cycles affect structural response, collapse assessment and overall 
performance of structural components subjected to subduction zone earthquakes. The occurrence 
of these seismic events suggests that large magnitude ground motions of long duration have the 
potential of significantly increase the number of inelastic excursions and consequently incur 
more extensive structural damage compared to ground motions with similar elastic spectral 
displacement demands but less duration as discussed in Chapter 2, and also in Raghunandan and 
Liel (Raghunandan and Liel 2013), and Chandramohan et al. (Chandramohan et al. 2013). This 
effect is mostly attributed to the rate of structural strength and stiffness deterioration due to an 
increase in load reversals imposed for large magnitude and long duration ground motions. This 
aspect is particularly relevant in subduction zones due to the fact that larger magnitude 
earthquakes are associated with strong motions of long duration (Dobry 1978), (Midorikawa et 
al. 2012). The increase of inelastic demands creates a critical necessity to improve current 
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loading protocols, which predominantly have been developed using crustal ground motions of 
moderate to high magnitude.  

Capturing the mega subduction effect is of vital importance in the assessment of RC bridge 
components located in the Pacific Northwest coast of the United States which lies near the 
Cascadia subduction zone and where a mega thrust earthquake of long duration forms a major 
component of the seismic risk. For that reason, in this chapter is discussed the development of a 
rational quasi-static loading protocol capable of simulating the demands imposed on reinforced 
concrete bridge columns.  

In order to achieve this objective the results from non-linear time history analyses considering 
numerous subduction ground motions imposed on structures with a wide range of structural 
periods and pre-determined ductilities were analyzed using a simplified rainflow counting 
procedure (ASTM E1049-85 2005). Throughout the analyses and development, a methodology 
similar to the one utilized for the development of a testing protocol for wood frame structures 
(Krawinkler et al. 2000a) was utilized. Since strength and deformation capacities of structural 
components depend on the cumulative damage that the system undergoes under load reversals 
imposed by seismic excitations. It is recognized a direct relationship between the number of 
inelastic cycles and damage (Krawinkler et al. 1983), (Stephens & Yao 1987). Various models 
have been developed to quantify this relationship (Cosenza et al. 1993) (Ghobarah et al. 1999); 
two well-known relationships describing the cumulative damage are the normalized cumulative 
ductility and the Coffin-Manson law for low-cycle fatigue in conjunction with the Miner’s rule 
of linear damage accumulation. Both models show a direct relationship between structural 
damage and the number and amplitude of damaging cycles. Thus, the number of inelastic cycles 
and a cumulative damage demand were selected as the main parameters to develop the protocols. 
A range of protocols was developed with the aim of capturing more closely the inelastic 
demands of subduction megathrust earthquakes and, consequently, improving the seismic 
assessment of bridge columns through physical testing. 

3.2 IMPLICATIONS FROM PAST RESEARCH 

Limited experimental data can be found on reinforced concrete (RC) columns subjected to long 
duration protocols that try to simulate subduction zone earthquakes since most of the seismic 
assessment of RC bridge columns has been carried out using conventional cyclic loading 
protocols, such as those shown in Figure 3.1. These conventional protocols have been developed 
to reflect seismic cumulative demands of short period structures that are not representative of 
long period structures (Cheung et al. 1991), (Priestley et al. 2002), (ACI 374.2R-13 2013) and do 
not represent the demands imposed by subduction mega earthquakes.  

Moreover, experimental studies have shown that the displacement capacity of structural 
components is influenced by the loading history applied. A relevant research was carried out by 
Takemura and Kawashima (Takemura and Kawashima 1997) to study the influence that different 
loading histories have on the ductility capacity of reinforced concrete bridge piers. In 
Takemura’s research six nominally identical specimens were tested under different loading 
protocols resulting in six different responses. Another relevant research was carried out by 
Kunnath, et al. (Kunnath 1997) to investigate the cumulative seismic damage in circular 
reinforced concrete bridge columns, which were mostly controlled by flexural behavior. With 
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that purpose, twelve columns were tested to quarter-scale. Test results led to the conclusion that 
the load path highly influences the failure mode of RC columns. In this study was found that 
columns subjected to cycles of low amplitude were likely to present a failure in the confinement 
rather than in the longitudinal bars. On the other hand, under cycles of high amplitude the failure 
mode was controlled by rupture in the longitudinal reinforcement. The study also revealed that 
conventional loading protocols commonly used in experimental testing tend to replicate 
unrealistic drift demands because numerous large inelastic reversals are imposed in the 
component. This is not representative of typical earthquakes demands, which usually imposed 
several inelastic cycles of low amplitude and just a few large inelastic cycles. 

Similarly, using the concept of low-cycle fatigue and the cumulative damage model employed in 
the research carried out by Kunnath, experimental tests were performed at the Washington State 
University in order to investigate the performance of pre-1975 concrete bridges subjected to 
subduction earthquakes (McDaniel et al. 2006). In this research, eight circular lightly confined 
reinforced concrete columns were tested using different displacement history to represent the 
demands imposed by subduction zone ground motions of long duration. Loading protocols with 
cycles of constant amplitude were performed to simulate those demands. The columns showed 
three different modes of failure depending on the load protocol employed. The first mode of 
failure was an interaction of shear and flexure when the applied protocol consisted of large initial 
inelastic cycles; the second failure mode was buckling of the longitudinal reinforcement when 
the column was subjected to many small inelastic cycles. The final mode of failure was slipping 
of the longitudinal reinforcement under a considerable amount of small amplitude inelastic 
cycles followed by large ones. Thus, these results, as well as those obtained by Kunnath 
(Kunnath 1997), showed that the failure mode of RC columns depends on the displacement 
history applied to them.  

Moreover, Pujol (Pujol 2006) and Borg (Borg 2012) carried out experimental studies of 
reinforced concrete columns subjected to different loading histories, which showed that the drift 
capacity is highly influenced by the displacement history and the number of cycles.  

A similar study was recently performed at MCEER, University at Buffalo in conjunction with 
the National Taiwan University of Science and Technology (Ou et al. 2013). In this case, 
reinforced concrete bridge columns were tested applying two different loading protocols to 
investigate the influence of the number of cycles on bridge columns. Test results showed that 
columns under a long duration protocol behave significantly different in terms of strength and 
stiffness degradation than those columns under conventional protocols showing that on high 
levels of damage the strength and stiffness degradation of the specimen would increase markedly 
under long duration earthquakes of large magnitude. 

Thus, recent research studies in conjunction with the occurrence of devastating subduction zone 
mega earthquakes demonstrates that the development of loading protocols reflecting the increase 
in the number of inelastic demands posed by ground motions of large magnitude and long 
duration is needed to improve the assessment of RC bridge columns through experimental 
evaluations. 
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    (a)     (b)   (c) 

Figure 3.1: Conventional loading protocols used on RC column assessment. (a) New Zealand 
Protocol (Cheung et al. 1991), (b) Modified New Zealand Protocol (Priestley et al. 2002), (c) 

ACI374 unidirectional protocol (ACI 374.2R-13 2013). 

 

3.3 SELECTION OF EARTHQUAKE GROUND MOTIONS 

Regions of the Pacific Northwest Coast of the United States, which lies near the Cascadia 
subduction zone (also referred to as the Juan the Fuca subduction zone), may be affected by a 
megathrust earthquake of long duration similar to those occurred in Chile and Japan (Heaton and 
Hartzell 1986). Most of the loading protocols used in seismic assessment have been developed 
for a specific structural or nonstructural component by utilizing a set of crustal ground motions. 
These ground motions are often representative of the 10% probability of exceedance in 50 years 
(10/50) hazard level for Los Angeles conditions and were selected to avoid near-fault effects, at 
distances from fault rupture greater than 13 km, and from crustal earthquakes of moment 
magnitudes (Mw) varying between 6.7 and 7.3. (Krawinkler et al. 2000a), (FEMA 461 2007) 

With the aim of developing representative loading protocols for bridge components, a selection 
of strong motion records similar to that presented in Chapter 2 was conducted in order to 
determine the inelastic demands imposed by subduction megathrust earthquakes as shown in 
Table 1. The subduction zone ground motion sets used in the development of loading protocols 
were chosen from the 1985 Valparaiso (COSMOS 2012), 2007 Sumatra (COSMOS), 2010 Maule 
(U. Chile 2010), and 2011 Tohoku (K-Net undated) earthquakes with distances to the epicenter 
greater than 100 km to reduce the number of records and ensure far field response. The 
subduction ground motion sets, in spite of being treated as a single set called Subduction, were 
divided into four sub-sets in order to observe the differences in the inelastic demands that could 
be generated by variations in earthquake characteristics or regional geology. Tohoku ground 
motions were further differentiated, referred to herein as Tohoku1 and Tohoku 2, because of the 
large amount of records available on the Kyoshin Network Database (K-Net undated) and in 
order to have one of the Tohoku sets with similar PGA range to the other sets. Only one pair of 
ground motions for the 2007 Sumatra earthquake was utilized due to the lack of strong motion 
records available. 

A set of crustal ground motions was utilized to allow for demand comparisons. Crustal ground 
motions, referred to herein as Crustal set, were chosen from the FEMA P695 far-field record 
(FEMA P695 2009), which is based on a representative set of twenty-two horizontal ground 
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motions taken from the PEER database (PEER 2006) with the following criteria: from sites 
located at distance greater than 10 km from the fault rupture, moment magnitude greater than 
6.5, recorded from soils categorized as Site Class C and D, and originated from shallow crustal 
sources (strike-slip or reverse fault mechanisms). The number of strongest records was limited 
from each earthquake to two and thus avoids bias in the results.  

For each ground motion recording two orthogonal horizontal records were treated separately, 
while the vertical ground motion components were not considered. Although, there is no general 
consensus on the definition and determination of the strong ground motion duration, in this study 
the duration was taken as the “Bracketed Duration”, which is defined as the first to the last 
occurrence of an acceleration of 0.05g (Bolt 1969). The average duration of subduction ground 
motions was found to be at least twice that of the crustal set as summarized in Table 3.1. 
Furthermore, the bracketed duration for the Tohoku sets is from 7 to 10 times higher than the 
duration for the crustal set. In this study, no scaling procedure was employed on the records and 
instead a target ductility design was conducted as discussed in Chapter 2. In this manner, the 
earthquake source variability was minimized since recent studies have demonstrated that scaling 
input records to a target spectral acceleration level (Sa) can produce biased results (Luco and 
Bazzurro 2007). 

Table 3.1: Ground motion sets used for the development of cyclic loading protocols 

Set Mw
1 

Site 
Class 

Dist. Epicenter 
Average (km)

PGA 

Range (g)
Number of 

Records 

Average 
Bracketed 

Duration (sec) 
Crustal 6.5-7.6 C/D 39 0.21-0.82 37 15 

Valparaiso 7.82 B/D 137 0.11-0.71 36 39 
Sumatra 7.9 - 168 0.13 2 48 
Maule 8.8 B/D 357 0.13-0.93 31 53 

Tohoku1 9.0 B/C/D 238 0.94-2.01 27 153 
Tohoku2 9.0 D/E 282 0.20-0.81 166 110 

1 Mw: Moment magnitude 
2 Referred to Ms magnitude. Ms: Surface wave magnitude 

3.4 LOADING PROTOCOL DEVELOPMENT 

3.4.1 Hysteresis Model and Target Response 

The main objective of a loading protocol is to assess the structural capacity of components.  
Since demand and capacity are not independent, it is reasonable to think that one should know 
the seismic excitation imposed on the component and its response before the development of any 
protocol. 

In order to predict the damage that a structure undergoes during severe earthquakes, it is 
important to represent in a realistic way the behavior of structural components during loading 
reversals. In the case of reinforced concrete components, the Clough (Clough 1966) and Takeda 
(Takeda et al. 1970) hysteretic models are widely used. However, these models assume that the 
stiffness degradation is related to the maximum displacement of the system and not to the 
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number of cycles. Since the analyses were expected to incorporate numerous large inelastic 
excursions, the peak oriented Ibarra-Medina-Krawinkler hysteretic model (Ibarra et al. 2005a) 
was utilized. This model was referred to as “Degrading model” in Chapter 2 and includes 
strength capping, residual strength, and strength and stiffness deterioration caused by load 
reversals as illustrated in Figure 3.2. This model was calibrated using test results of bridge 
columns dominated by flexural behavior. Column tests can be found in the Pacific Earthquake 
Engineering Research Center (PEER) structural performance database. This process allowed us 
to find appropriate parameters to closely simulate load-deformation behavior of the components 
in study. 

Results from nonlinear time-history analyses of single degree of freedom systems (SDOF) using 
OpenSees (OpenSees 2011), as described in Chapter 2, were utilized. In OpenSees ach SDOF 
system was modeled as a zero length element. The model parameters were calibrated using test 
results of bridge columns dominated by flexural behavior. A damping ratio of 5% was set for the 
analysis. A wide range of structural fundamental periods were considered from 0.2 to 4.0 
seconds by maintaining the mass of the system constant and varying the stiffness of the SDOF 
system. Since the majority of modern seismic design codes for bridges (AASHTO 2009), 
(Caltrans 2013) rely on component ductilities, a constant ductility inelastic response approach 
(Ridell and Newmark 1979), (Krawinkler 1996) was deemed suitable to perform the nonlinear 
analyses. This approach assumes that for each ground motion and at each period, the structural 
system is designed to reach the pre-determined ductility (μ) by finding the yield strength of the 
structure that produced the desired ductility value. Ductility is defined as the ratio of the 
maximum displacement to the yield displacement (μ = δu/δy), where the maximum ductility 
capacity was calculated when the force in the post-capping range degraded to not less than 80 
percent of the maximum as illustrated in Figure 3.2. Consequently, recursive analyses were 
needed to design each system in order to reach pre-determined displacement ductilities of 2, 4 
and 8. 

 

Figure 3.2: Hysteretic behavior of SDOF system. Adapted from Ibarra et al. (Ibarra et al. 2005a) 
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3.4.2 Cumulative Damage 

Strength and deformation capacities of structural components depend on the cumulative damage 
that the system undergoes under load reversals imposed by seismic excitations. A direct 
relationship between the number of inelastic cycles and damage can be assumed (Krawinkler et 
al. 1983), (Stephens and Yao 1987). Various models have been developed to quantify this 
relationship (Cosenza et al. 1993) (Ghobarah et al. 1999). In order to capture the behavior under 
ground motion excitations, most of current testing protocol developments and experimental 
studies have been conducted based on a general cumulative damage concept using the Coffin-
Mason model and the Miner’s rule of linear damage accumulation as a baseline (Krawinkler et 
al. 1983). This concept implies that every excursion in the inelastic range will cause damage in 
the component, and this damage will be accumulated from excursion to excursion, where an 
excursion is defined as the path from one peak to the next peak in the time history response. 
Thus, the performance of structural components depends on the previous inelastic excursions 
alluding to a memory of past damaging events. In this approach, the damage is directly affected 
by the number of inelastic excursions (N), the range of each plastic excursion (Δδpi), and the sum 
of those ranges as shown in Eq. (3.1). C and c are structural performance parameters that depend 
on the type of component and failure mode. The parameter c is usually greater than 1.0, which 
implies that large inelastic excursions cause more damage than low ones. This damage index has 
demonstrated good correlations between the quantitative and descriptive damage for steel 
structures (Krawinkler et al. 1983) and reinforced concrete structures (Kunnath et al. 1997).  
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i
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  (3.1) 

Another extensively damage index used in reinforced concrete structures was formulated by Park 
and Ang (1985), which accounts that damage is caused by the maximum deformation and the 
cumulative dissipated energy as shown in Eq. (3.2). 
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Where Dpa is the damage index; δmax is the maximum response deformation; δu is the ultimate 
deformation capacity under static load (monotonic response); Qy is the calculated yield strength; 
dE is the incremental dissipated hysteretic energy; and 	  is a factor that depends on several 
structural parameters that try to measure the duration effect on the hysteretic energy.  

However, in order to calculate the damage indices  and , in a meaningful way, the 
parameters c, C and  have to be experimentally obtained and validated, which can lead to 
undesirable uncertainties in the development of the protocol since those parameters are directly 
influenced by the cyclic loading history. For this reason, in this study was utilized another 
damage index also based on cumulative damage called Normalized Cumulative Plastic 
Displacement (NCPD), which is a simple measure of structural deterioration. This metric is 
calculated by accumulating the ratio of plastic displacement range under an excursion (Δδpi) to 
the yield displacement (δi) as shown in Eq. (3.3). 
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The number of damaging cycles (N) and the NCPD were considered the target demand 
parameters in the development of testing protocols for RC bridge columns. In this sense, a cycle 
is considered damaging when its amplitude is greater than the yield displacement. 

3.4.3 Cycle Counting 

The seismic response exhibited by a structural component contains excursions that are not 
symmetric, and does not follow a consistent pattern under different ground motions. 
Additionally, sequence effects, which are related to the fact that not all the inelastic excursions 
occur before the maximum one, have not been fully established through analytical and 
experimental studies. In order to overcome this sequence effect in the development of loading 
protocols for structural components, researchers have been using the concept of pre-peak 
excursions (Krawinkler et al. 2000a), (FEMA 461 2007). Understanding as pre-peak excursion 
any excursion that occurs before either the maximum or minimum peak displacement. Using all 
excursions may lead to an overestimation of cumulative damage because most of the damage 
sustained by a structural component occurs when excursions tend to widen the hysteresis 
response. The development of the loading protocols in this study was primarily based on pre-
peak excursions. However, given the long duration of the subduction records, both pre-peak as 
well as all excursions were considered for comparison purposes in order to analyze the 
implications of selecting one over the other. 

To rationalize the development of the testing protocol and compare the demands imposed by 
different ground motions, the time history responses based on pre-peak excursions were 
converted into a series of cycles using the simplified rainflow counting methodology (ASTM 
E1049-85 2005) as illustrated in Figure 3.3. This method of cycle-counting results in a 
deformation history composed only of full cycles due to the fact that the history response is re-
arranged in a way that always starts with either the maximum or minimum peak. The resultant 
excursions and cycles obtained after performing the rainflow counting are not symmetric with 
respect to the undeformed condition, also referred to as the mean effect, which could distort the 
cumulative damage of the structure. However, this effect is not considered in many practical 
cases because the effect of large mean deformations primarily influences the response in 
situations of near fault rupture (Krawinkler et al. 2000b). Thus, the proposed displacement 
protocols were developed with a stepwise increasing deformation of symmetric excursions 
instead of asymmetric excursions. The rainflow counting procedure was employed in the non-
linear time history response of individual SDOF systems across the range of fundamental 
periods. This generated a vast amount of data, which was statistically reduced to allow for 
comparisons in a rational way. The data that was extracted and post-processed from the rainflow 
counting procedure was the number of inelastic cycles and the NCPD, where the number of 
inelastic cycles was equal to the number of cycles above ductility one (μ =1.0) as shown in 
Figure 3.3(d) and the NCPD was obtained by using Eq. (3.2). It is worth mentioning that the 
NCPD computed for the development of cyclic loading protocols differs from that shown in 
Chapter 2 since the former was obtained as a result of the rainflow counting procedure. The 
number of inelastic cycles and the NCPD were represented employing the 84th percentile as 
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target value in order to represent a reasonable and conservative estimate of the demand 
parameters, and also in an effort to bound the applicability of the resulting protocols.  

 

Figure 3.3: Illustration of the simplified rainflow counting procedure. (a) Inelastic response 
history. (b) Pre-Peak inelastic response history. (c) Ordered cycles including mean effect. (d) 

Final ordered cycles. 

3.4.4 Results and Protocol Development 

Results from the three pre-determined ductilities and a wide range of structural fundamental 
periods were considered in the development of the protocols in order to represent a vast number 
of bridge structures. Moreover, the results obtained by using structures of different fundamental 
periods was specially considered since conventional protocols commonly used to assess the 
seismic performance of RC structures were developed to reflect demands on short period 
structures (FEMA 461 2007), which are not often representative of bridge responses. From these 
results, the number of inelastic cycles and NCPD showed a high dependence on the fundamental 
period, as illustrated in Figure 3.4 and Figure 3.5. The figures represent the 84th percentile of 
each set and clearly trend toward reduced demand with increase in period. Furthermore, the 84th 
percentile of all the subduction records were utilized to develop the protocols since the results of 
each set of subduction ground motion showed a similar trend for structures with periods less than 
2.0 sec. The demand parameters also showed that for structures with periods less than 2.0 sec the 
demands imposed by subduction earthquakes are on average 100% higher than those for crustal 
earthquakes. For periods above 2.0 sec, the results depended on the earthquake set. This effect is 
most evident for the Chilean earthquakes (Valparaiso and Maule sets) where the number of 
inelastic cycles and the NCPD tend to plateau significantly above the crustal sets for fundamental 
periods over 2.0 sec. Meanwhile, the same parameters for the Indonesia and Tohoku sets tend to 
decrease with increasing period, approaching the demands under the action of the Crustal set. 
The results led to the conclusion that cumulative plastic demands in bridges of long fundamental 
periods (≥ 2.0 sec) imposed by Chilean earthquakes (Maule and Valparaiso), are larger than 
those imposed by Tohoku and Indonesia earthquakes. This effect is more predominant for higher 
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ductilities and when all the excursions are considered. The number of inelastic cycles and the 
NCPD decrease as the period of the system increases, which implies that the critical demand 
occurs for structures with low fundamental period. Multi span bridges that rely on columns in 
addition to abutments are unlikely to exhibit such short fundamental periods. For those reasons, 
three fundamental periods of 0.5, 1.0 and 2.0 seconds were selected for cyclic load protocol 
development as a benchmark representation of expected bridge fundamental periods, referred to 
herein as short (0.5s), medium (1.0s) and long (2.0s) fundamental periods. The consideration of 
different natural periods reflects the period dependency of the analysis results. Appropriate 
selection of resulting protocols may avoid overestimation of inelastic cycles that the structure 
undergoes or distortion in the assessment of the behavior during physical testing. 

The influence of different target ductilities can also be compared. Increase in achieved ductility 
increases both the number of inelastic cycles (N) and the normalized cumulative plastic 
displacement (NCPD). For the benchmark periods averaged over all sets, results have shown a 
nearly linear relation in the NCPD for different ductilities as illustrated in Figure 3.6, which 
implies that for structures with other ductilities the cumulative demand may be found by linear 
interpolation of the values for ductilities 2, 4, and 8. On the other hand, the number of inelastic 
cycles does not show a linear relation as the gradient reduces with increased period. This trend 
implies that linear interpolation between the selected benchmark periods would result in 
conservative estimate of inelastic cycles and could be a practical choice for protocol selection 
between the representative target ductilities used in this paper. 

Comparison of pre-peak and all excursion demands is summarized in Table 3.2 using a relative 
ratio. For structures of low ductility (μ = 2) pre-peak excursions represent over 75% of the 
demands computed considering all excursions. Identical protocols, for both pre-peak and all 
excursions, were proposed for low ductile structures since the demands between the two 
approaches were similar. On the other hand, the ratios between pre-peak excursion demands and 
all excursion demands decrease as the ductility of the structure increases, with ratios as low as 
63% in the case of high ductile structures (μ = 8). Therefore, using all excursions in the 
development of testing protocols may lead to more damage in moderate and high ductility 
structures. 

Table 3.2: Comparison of demand parameters for pre-peak and all excursions 
Ratio Pre-Peak/All Excursions 

Period 
T 

Max 
μ 

Ncycles > δy NCPD 

0.5 
2 78% 80% 
4 74% 75% 
8 66% 69% 

1.0 
2 75% 77% 
4 70% 72% 
8 67% 70% 

2.0 
2 83% 85% 
4 71% 74% 
8 63% 65% 
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  (a)  (b) 

Figure 3.4: Number of inelastic cycles for different component ductilities (μ):                                       
(a) Pre-Peak excursions; (b) All excursions. 
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 (a)  (b) 

Figure 3.5: Normalized Cumulative Plastic Deformation (NCPD) for different component 
ductilities (μ):  (a) Pre-Peak excursions; (b) All excursions. 
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              (a)         (b) 

Figure 3.6: Demand parameter values for different component ductilities.                                            
(a) Number of Inelastic Cycles; (b) Normalized Cumulative Plastic Displacement (NCPD) 

3.5 PROPOSED PROTOCOLS 

The analysis results led to differentiating the testing protocol in terms of ductility and period of 
the structure. In order to closely reflect the subduction zone demands the loading protocols were 
developed using the target values of the parameters summarized in Table 3.3 for pre-peak 
excursions. The proposed loading protocols consider two stages. The first stage consists of three 
cycles, in each of the following displacements (or loads), 0.25δi (Vi), 0.5δi (Vi), 0.75δi (Vi) and 
one cycle at 1.0δi (Vi) in order to visualize low damage states (e.g. first cracking). Where, δi is 
the theoretical yield displacement and Vi is the theoretical strength at first yield. The second 
stage of inelastic cycles aims to replicate the demands imposed on concrete bridge columns by 
subduction zone earthquakes of long duration. The proposed loading histories, the amplitude of 
each inelastic cycle and number of cycles at those amplitudes are illustrated in Table 3.4 and 
Figure 3.7. In Figure 3.7 the dotted lines represent the first stage and the solid lines the second 
stage. Additional loading protocols considering all the excursions are illustrated in the 
appendices. 
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Table 3.3: Target values and proposed demands considering pre-peak excursions and all 
excursions 

Period 
T 

Max 
μ 

Ncycles > δy NCPD 
Pre-Peak 

Excursions 
All Excursions 

Pre-Peak 
Excursions 

All Excursions 

Target 
Value 

Proposed 
Protocol 

Target 
Value 

Proposed 
Target 
Value 

Proposed 
Protocol 

Target 
Value 

Proposed 

0.5 
2 7 9 9 9 19 24 24 24 
4 23 23 31 31 76 76 101 103 
8 40 40 61 61 176 177 254 253 

1.0 
2 6 9 8 9 17 24 22 24 
4 16 16 23 23 56 77 78 77 
8 29 29 43 43 133 132 189 188 

 
2.0 

2 5 6 6 6 14 17 17 17 
4 12 12 17 17 44 43 59 59 
8 20 20 32 32 98 97 151 151 

 

  



 

37 

 

 

 

 
 (a) (b) (c) 

Figure 3.7: Proposed loading protocols for component ductilities (µ) =2, 4 and 8.                                     
(a) T = 0.5 sec, (b) T = 1.0 sec, (c) T = 2.0 sec. (Pre-peak excursions) 

The proposed protocols were developed using the concept of pre-peak excursions. This approach 
was used since cycles that occur after the maximum displacement will cause less cumulative 
damage and should be considered separately (Krawinkler et al. 2000a). For that reason, in cases 
when the specimen does not reach failure under the applied stepwise loading protocol, the test 
should continue under lower amplitude cycles also referred as trailing cycles. Trailing cycles of 
amplitude 3δyield for moderate ductile column and 5δyield for highly ductile column were chosen. 
These values are based on member ductility demand requirements found in AASHTO Seismic 
Specifications (AASHTO 2009), which state that the maximum individual member displacement 
ductility demand for Seismic Design Category (SDC) C shall be equal to 3 and for SDC D shall 
be equal to 5 for cases of single-column bents. The number of trailing cycles was calculated from 
the analyses considering all excursions instead of only pre-peak. The number of trailing cycles is 
shown inside parentheses in Table 3.4. The notation (+ number of trailing cycles) represents the 
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number of trailing cycles that are added following the completion of the entire loading protocol. 
The trailing cycles are at a set amplitude, which is shown in the first column of Table 3.4 and 
may be either 3 or 5 depending on the proposed protocol to be used. 

Table 3.4: Proposed loading protocols 

Cycle 
Amplitude 

xδyield 

Number of Inelastic Cycles (trailing cycles shown in parentheses) 
Ductility (μ = 2) Ductility (μ = 4) Ductility (μ = 8) 

T = 
0.5s 

T = 
1.0s 

T = 
2.0s 

T = 
0.5s 

T = 
1.0s 

T = 
2.0s 

T = 
0.5s 

T = 
1.0s 

T = 
2.0s 

1.0 1 1 1 3 2 2 3 3 2 
1.1 2 2 1 3 2 1 3 3 2 
1.2 2 2 1 3 2 1 3 3 1 
1.3 1 1 - 2 1 1 3 2 1 
1.4 - - 1 2 1 1 3 1 1 
1.5 1 1 - 1 1 1 3 1 1 
1.6 - - - 1 1 - 3 1 1 
1.7 1 1 1 1 1 1 2 1 1 
1.8 - - - 1 - - 2 1 1 
1.9 - - - 1 1 - 2 1 1 
2.0 1 1 1 1 1 1 1 1 1 
2.1    - - - - 1 - 
2.2    1 - 1 1 1 1 
2.4    - - - 1 1 - 
2.6    1 1 - 1 1 1 
2.8    - - - 1 1 - 
3.0    (+5) 1(+4) 1(+3) 1 1 1 
3.2    1 - - 1 - - 
3.5    - - - 1 1 1 
4.0    1 1 1 1 1 - 
4.5       1 - 1 
5.0       (+8) 1(+6) (+5) 
5.5       1 - - 
6.0       - 1 1 
6.5       1 - - 
8.0       1 1 1 

 

Additionally, the cycle amplitudes of the second stage approximately follow the values obtained 
using Eq. (3.4) and the appropriate coefficients showed in Table 3.5, which were obtained 
through regression using an exponential curve on the statistical results obtained from the 
simplified rainflow counting procedure. For example, in order to obtain the amplitude for the 
sixth inelastic cycle (N=6) for a component of ductility 8 and period 0.5s, f(6) that represents the 
amplitude of the sixth inelastic cycle is equal to 1.06 times the yield displacement (δy). The 
maximum number of cycles for each protocol is equal to the respective proposed value shown in 
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Table 3.3. For additional comparison, Table 3.5 also shows values considering all excursions in 
case experimentalists decide those would be more appropriate for their application.  

 

  y
NdNb eceaNf  )(  (3.4) 

 

Table 3.5: Exponential coefficients to obtain cycle amplitudes 

Coeff. 
μ = 2 μ = 4  μ = 8 

T 
0.5s 

T 
1.0s 

T 
2.0s 

T  
0.5s 

T 
1.0s 

T 
2.0s 

T 
0.5s 

T 
1.0s 

T 
2.0s 

Pre-Peak Excursions 
a 0.9934 0.9934 0.5215 0.9653 0.9557 0.9638 0.8695 0.9014 0.9869 
b 0.0221 0.0221 -

0.3778 0.0281 
0.0439 

0.0543 0.0336 0.0415 0.0444 
c 0.0137 0.0137 0.5674 1.15E-

4 
8.91E-

4 
2.72E-

3 
1.913E-

7 
2.83E-

5 
1.09E-

3 
d 0.4511 0.4511 0.2066 0.4284 0.4853 0.5570 0.4252 0.417 0.4282 

All Excursions 
a 

Same as Pre-Peak 
Excursions 

0.9505 0.9335 0.936 0.8356 0.8659 0.8931 
b 0.0245 0.0357 0.0485 0.0224 0.0314 0.0433 
c 1.18E-

5 
3.14E-

5 
5.57E-

5 
1.84E-8 3.45E-

7 
3.4E-6 

d 0.3875 0.478 0.613 0.3167 0.3816 0.4398 
 

Since the proposed protocols are based on increments of ductility demand, determining the yield 
displacement of the specimen is essential and mirrors other cyclic protocols. To overcome this, a 
first estimate of the yield displacement shall be found by performing a moment-curvature 
analysis of the column section based on measured material properties. Experimentalists can 
modify the testing protocol for structures with different ductility in order to represent the target 
ductility demand appropriate for their desired application, in which case interpolation of the 
demand values presented in Table 3.3 is recommended. 

In order to determine the yield displacement (δy) to be used in an experimental test researchers 
have employed two approaches. The first consists of performing a monotonic pushover test 
before cyclic loading tests. This approach is used for three main reasons. First of all, the yield 
displacement for future cyclic tests can be established based on the monotonic test. Secondly, it 
reflects that the structural response under seismic excitations usually shows an increase of 
deformations in only one direction, phenomenon denominated “ratcheting” of the response, 
which implies that cyclic deterioration under load reversals would diminish in the inelastic range 
close to the system collapse (Lignos and Krawinkler 2012). Finally, a monotonic test would 
provide the value of target ductility in cases when more refined cyclic loading protocols want to 
be performed. The second approach consists of determining the yield displacement during the 
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progression of the cyclic test. Load control cycles are first employed based on percentages of the 
theoretical component strength (Vi), usually 0.25Vi, 0.5Vi, 0.75Vi, and Vi. The theoretical 
strength is determined dividing the first yield moment, obtained from a moment-curvature 
analysis, by the column cantilever length. Then the experimental yield displacement (δy) is 
established by using the ratio of the theoretical force at which the concrete cover reaches a strain 
of 0.004 to the experimental elastic stiffness (Ke), which is calculated as the ratio of the 
theoretical first yield force (Vi) to the displacement measured experimentally (δy’) as illustrated 
in Figure 3.8 (Priestley et al. 2002). 

 

Figure 3.8: Determination of yield displacement 

3.6 COMPARISON TO CONVENTIONAL PROTOCOLS 

In order to assess the seismic performance of bridges, it is common that reinforced concrete 
members are tested using conventional cyclic loading protocols as those shown in Figure 3.1 
(Cheung et al. 1991) (Priestley et al. 2002), (Kowalsky et al. 2009). Experimental studies 
(Kunnath et al. 1997), (McDaniel et al. 2006), (Song and Lee 2012) have demonstrated that these 
type of loading protocols may not be representative of the demands imposed by ground motion 
excitations, which would generally subject the structure to numerous small inelastic cycles and 
only few large inelastic cycles before collapse occurs. 

An illustrative comparison of three cyclic protocols commonly used to assess the capacity of 
reinforced concrete bridge columns with the proposed protocol for a target ductility capacity of 8 
and period 0.5 sec is summarized in Figure 3.9. Since the different protocols culminate in the 
same ductility demand, they were ordered to end at the same cycle to allow the reader a more 
clear visual comparison. This led to clearly differentiate among protocols in terms of the number 
of inelastic cycles and their amplitude. The three selected conventional protocols were the New 
Zealand protocol (Cheung et al. 1991), the Modified New Zealand Protocol (Priestley et al. 
2002), and the ACI374 protocol (ACI 374.2R-13 2013).  

Computed demand parameters for the three conventional protocols and the proposed are also 
compared in Table 3.6. The modified N.Z. protocol is observed to be more demanding in terms 
of NCPD than the proposed testing protocols for structures of low ductility capacity in the range 

Vi 

Vεc = 0.004 

Load, V

Displacement, δ

Ke 

δy δy’ 

Yield displacement: 
 
 
Stiffness: 
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of periods selected, and for structures of high ductility capacity with medium and long 
fundamental periods. The fact that the modified N.Z protocol is more demanding than the 
proposed protocols for structures with medium and long fundamental periods was not necessarily 
surprising since conventional protocols have been developed to reflect the demands in short 
period structures (T = 0.2-0.3 sec) and because their arrangement of cycles tends to overestimate 
the number of large inelastic cycles imposed by seismic excitations (FEMA 461 2007), (ACI 
374.2R-13 2013). This overestimation is evident in that over 55% of the cumulative demand 
(NCPD) using the conventional protocols came from cycles of large amplitude, as compared to 
16% in the case of the proposed protocols for short period structures with high ductility capacity, 
and 44% in the case of long period structures with low ductility capacity.  

 

Figure 3.9: Illustrative comparison of protocols for bridge columns of ductility capacity 8 and 
period 0.5 sec. 

Table 3.6: Comparison of conventional protocols and proposed protocols 

Demand Parameter 
N.Z. 

Protocol
ACI 374 
Protocol 

Modified 
N.Z. 

Protocol 

Proposed Protocols 
T=0.5 

s 
T=1.0 

s 
T=2.0s

Ductility (μ) = 2 
No. Inelastic Cycles 3 4 9 9 9 6 

NCPD 10 12 27 24 24 17 
(CPD ≥ 1.5 �y) / NCPD1 80% 67% 78% 43% 43% 44% 

Ductility (μ) = 4 
No. Inelastic Cycles 5 8 15 23 16 12 

NCPD 26 40 69 76 56 43 
(CPD ≥ 3 �y) / NCPD 62% 70% 61% 19% 25% 33% 

Ductility (μ) = 8 
No. Inelastic Cycles 9 16 21 40 29 20 

NCPD 82 144 153 177 132 97 
(CPD ≥ 6 �y) / NCPD 68% 58% 55% 16% 21% 29% 

1 Percentage of cumulative normalized plastic displacement due to large inelastic cycles 
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A visual comparison is shown in Figure 3.10 for the cumulative displacement ductility demand 
among the proposed protocols for period 0.5 sec, the conventional protocols and the results from 
the statistical analyses using the 84th percentile of the demand parameters as target value. 
Proposed protocols closely resemble the cumulative demand obtained by using the statistical 
target values, which in Figure 3.10 are referred to as analysis results. This correlation verifies the 
appropriate selection of the discrete amplitudes for the proposed protocols relative to the finer 
resolution statistical target values. A period of 0.5 sec was selected as the closest period to make 
comparisons since the conventional protocols were developed for structures of period equal to 
0.2 seconds (ACI 374.2R-13 2013). Longer periods may not be representative and could lead to 
incompatible comparisons. Despite the differences in short period definition, the proposed 
protocols considering the subduction megathrust earthquakes exhibit higher cumulative ductility 
demand than the conventional protocols. This difference could be even larger had the proposed 
protocol considered even shorter period than 0.5sec structural response. 

 

   

   

Figure 3.10: Comparison of cumulative ductility demands for component ductilities 2, 4 and 8 
and component fundamental period of 0.5 sec. 

In Figure 3.11 the cumulative distribution function (CDF) of the proposed protocols for 
structures of period 0.5 sec is compared with the loading protocols commonly used on RC 
columns and the results from the statistical analyses. The conventional protocols used for the 
assessment of RC columns contain far fewer inelastic cycles than the proposed protocol. Despite 
the overestimation of the number of large inelastic cycles in the conventional protocols, the 
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proposed protocols for structures of moderate and high ductility capacity exhibit higher demands 
than the conventional protocols due to a substantial increase in the number of small inelastic 
cycles. This difference is mainly due to the fact that the proposed protocol tries to reflect the 
demands imposed by subduction earthquake excitations, which generally contain many small 
inelastic cycles and only a few large inelastic cycles. 

   

 (a) (b) 

      

 (c) 

Figure 3.11: Comparison of cumulative distribution functions for conventional protocols, 
proposed protocol, and statistical result for structures of period 0.5 sec and different component 

ductilities. (a) µ = 2, (b) µ = 4, (c) µ = 8. 

3.7 SUMMARY 

Observations based on the development of cyclic loading protocols can be summarized as 
follows: 

 The assessment of bridge columns through representative cyclic protocols could play 
a significant role in the future establishment of limit states and acceptance criteria to 
be applied in performance-based seismic design of bridge columns in areas subjected 
to subduction earthquake hazard. 

 The simplified rainflow procedure was employed to convert the inelastic response 
obtained from extensive non-linear time history analyses utilizing recorded strong 
motion data from subduction megathrust earthquakes into symmetric cycles. This 
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procedure also allowed for computation of demand parameters such as the number of 
inelastic cycles and the normalized cumulative plastic displacement metric. 
Observations based on these parameters showed that for structural periods below 
2.0s, the subduction mega earthquakes produced significantly greater number of 
inelastic cycles as well as cumulative plastic displacements than crustal earthquakes. 
Statistical assessment of the demand parameters were used to develop quasi-static 
loading protocols. Due to the dependence of the results on structural ductility and 
natural period of vibration, different loading protocols were proposed for three 
column ductilities (2, 4 and 8) and for three different periods representing short, 
medium and long fundamental periods.  

 The proposed loading protocols include a larger number of small amplitude inelastic 
cycles as compared to conventional protocols, revealing that conventional loading 
protocols commonly used in experimental testing tend to impose unrepresentative 
drift demands for subduction megathrust earthquakes through imposing numerous 
large inelastic reversals on the component. Despite the higher number of large 
inelastic cycles, the overall normalized cumulative plastic displacement demands 
were similar when compared to the proposed protocols. The proposed subduction 
protocols may influence the response of reinforced concrete columns due to an 
increase in the overall number of inelastic cycles and should be considered when 
megathrust subduction earthquake hazard affects the design criteria.
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4.0 ASSESSMENT OF SEISMICALLY DEFICIENT RC BRIDGE 
COLUMNS 

4.1 GENERAL 

In this chapter the influence of one of the proposed protocols on a representative deficient bridge 
column built before 1970 in the State of Oregon is analytically and experimentally examined. 

As discussed in previous chapters, the cumulative inelastic demands imposed by subduction zone 
earthquakes can increase as compared to crustal earthquake demands. This aspect is particularly 
relevant in the State of Oregon and the Northwest coast of North America due to their proximity 
to the Cascadia subduction zone. The Cascadia subduction zone is the over 1000km long 
boundary between the Juan de Fuca and North American plates. Geological evidence has shown 
that 13 significant earthquakes have occurred in the past 3000 years (Goldfinger et al. 2008). The 
most notable of which, the M9.0 earthquake of 1700, produced a tsunami large enough to reach 
Japan (Atwater et al. 2005). Historical evidence combined with comparisons of the Cascadia 
fault to other subduction zones has led geologists to conclude that a megathrust earthquake in the 
Cascadia subduction zone is impending (Heaton and Kanamori 1984). Given such seismic 
hazard, the assessment of deficient RC bridge substructures has become crucial in order to 
prioritize the bridges that need to be retrofitted and to maintain the highway network operable 
after a major seismic event.  

4.2 REPRESENTATIVE RC BRIDGE COLUMN 

In the 2010 ODOT inventory, there are over 9,864 bridges and culverts. The state highway 
agency owns 5,280 of these. However, only 2,567 of the highway bridges are in the NBI 
database of which 1,997 are multi span. Figure 4.1 shows the bridge classes and proportions of 
these multi span bridges. This section is focused on multi-span continuous stringer/girder RC 
bridges that were built before 1970 because are the most common type of bridge in Oregon. 

Reinforced concrete columns constructed before 1970 are commonly deficient in flexural 
ductility and shear strength as bridges were designed primarily for gravity loads without much 
consideration to lateral forces from seismic loading as illustrated in Figure 4.2. As a result, 
columns lack sufficient transverse reinforcement to provide satisfactory performance in a major 
seismic event. Typically, No. 3 or No. 4 hoops at 12 inches on center were provided in columns 
regardless of the column cross-sectional dimensions. The stirrups were anchored by 90o hooks 
with short extensions and intermediate ties were seldom used. Minimal restraint provided by the 
hoops can cause the longitudinal reinforcement to buckle once the concrete cover spalls. 
Furthermore, bridges built prior to 1970 have undesirable lap splices at the base of RC column. 
This lap splice detail can potentially be a cause for reduced column ductility and can result in 
rapid loss of flexural strength. Typical details for the representative multi-span continuous 
stringer/girder RC bridge is illustrated in Figure 4.3. 
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Figure 4.1: Bridge Classes 

 

 

Figure 4.2: Illustration of seismic loading consideration over the years. 
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(a) 

 

(b) 

Figure 4.3: Typical multi-span continuous stringer/girder RC bridge. (a) Picture. (b) 
Reinforcement details. 

4.3 NUMERICAL CASE STUDY 

The illustrative numerical case study presented in this section aims to assess the behavior of pre-
1970 bridge columns located in the State of Oregon, USA. The case study contemplates the 
numerical study of a representative pre-1970 bridge column subjected to a conventional protocol 
and a subduction protocol. The modified New Zealand protocol was used as the conventional 
protocol and the proposed protocol for structures of ductility 8 and fundamental period of 0.5 sec 
was used as the subduction protocol. Protocols with that target ductility were used because the 
ductility obtained from moment-curvature analysis of the column in study was close to 8. Both 
protocols used in the numerical case study are shown in Chapter 3. 

Typical RC columns built before 1970 in the State of Oregon are usually lightly reinforced and 
lap-spliced in places where plastic hinge formation is expected. Typical column properties and 
dimensions are summarized in Table 4.1 and the cross section is illustrated in Figure 4.3. 
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Table 4.1: Column properties and dimensions. 

f’c 

(ksi) 
f’ce 

(ksi) 
fy 

(ksi) 
fye 

(ksi) 

Cantilever 
Length 

(ft) 

Width
(in) 

Depth
(in) 

Axial
Load 
(kip) 

Axial 
Load 

Ratio 1 (%)

ρT 
(%)

ρL 

(%)

Lap Splice 
Length 

(db) 
3.3 4.29 60 68 9.25 24 24 160 8.4 0.0940.88 28 

1 Axial load ratio = P/(Ag f’c) 

Where,  

f’c: specified compressive strength of concrete at 28 days. 

f’ce: expected compressive strength of concrete. f’ce = 1.3(f’c) 

fy: specified yield stress of steel. 

fye: expected yield stress of steel. fye ≈ 1.1fy 

ρT: transverse ratio of steel. 

ρL: Longitudinal ratio of steel.  

db: diameter of longitudinal steel reinforcement. 

In order to model the inelastic behavior of the column the concentrated plasticity approach was 
utilized. The plastic hinge was modeled using the hysteretic model developed by Ibarra et al. 
(Ibarra et al. 2005a), as illustrated in Figure 4.4, and implemented in the software OpenSees 
(OpenSees 2011). Model parameters for column hinges, such as moment capacity and rotation 
capacity, have been obtained from empirical equations based on a vast amount of column tests 
(Haselton et al. 2008) (Biskinis and Fardis 2009).  

 

Figure 4.4: Hysteretic behavior used for the numerical case study. Adapted from Ibarra et al. 
(Ibarra et al. 2005a) 
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The hysteretic energy dissipation capacity plays a fundamental role in the assessment of bridge 
columns subjected to subduction zone ground motion. Haselton et al. (Haselton et al. 2008) has 
proposed equations to calculate this capacity (λ), which according his equation depends on the 
amount of transverse reinforcement, shear capacity and axial load ratio. Another equation also 
proposed by Haselton is included in the PEER/ATC 72-1 (PEER/ATC 71-1 2010) report, in 
which the value of λ only depends on the axial load ratio. The PEER/ATC report stated that for a 
typical column with seismic detailing, typical values of the parameter λ are on the order of 10 to 
20. On the other hand, in the study carry out by Haselton (Haselton 2008) values from 2 to 5 
were employed for highly deteriorated components. This means that a lower λ indicates that the 
element has a high rate of strength and stiffness deterioration and therefore less capacity to 
dissipate energy. Since pre-1970 columns were built without seismic detailing the behavior of 
these columns is expected to be represented by λ values near 2. 

The model parameters using equations proposed by Haselton (Haselton 2008), Biskinis (Biskinis 
2009), and moment-curvature analysis are summarized in Table 4.2. The moment –curvature 
analysis was based on conventional reinforced concrete flexure theory following AASHTO 
Specifications (AASHTO 2009) and is shown in the Appendices. It is worth mentioning that all 
the analyses utilized the expected material properties, where f’ce = 1.3f’c and fye  1.1fy. 

Table 4.2: Model Parameters 

Reference 
My 
(kN-
m) 

Mc/My EIeff/EIc Mr/My
θy 

(rad)
θp 

(rad) 
θpc 

(rad) 
θu 

(rad)
λ 

Theory 
(AASHTO 2009) 

544 1.07 0.29 0.8 0.006 0.043 - 0.049 - 

Haselton 
(Haselton 2008) 

544 1.13 0.20 - 0.009 0.019 0.033 0.062 42 

Biskinis 
(Biskinis 2009) 

542 - 0.19 - 0.010 0.022 - 0.032 - 

PEER/ATC 72-1 
(PEER/ATC 72-1 

2010) 
544 1.13 0.20 0.0 0.009 0.019 0.033 0.062 24 

This study 544 1.13 0.20 0.2 0.009 0.019 0.033 0.062
42 
24 
2 

 

Some of the shortcomings of the equations proposed by Haselton (Haselton 2008) and Biskinis 
and Fardis (Biskinis and Fardis 2009) is that they do not include the effect of number of cycles 
on the column rotation capacity. Moreover, Haselton’s equations do not account for the effect of 
lap-spliced rebars in expected plastic hinge locations. Despite this fact, Haselton’s and Biskinis’s 
equation lead to similar plastic rotation capacity (θp). 

Figure 4.5 shows the results using the model parameters summarized in Table 4.2. These plots 
show the effect of the conventional protocol and the subduction protocol for structures of 
ductility 8. Protocols with that target ductility were used because the ductility obtained from 
moment-curvature analysis was equal to 7. Comparing the results from the two protocols it can 
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be observed that for structures with high values of λ, i.e. low rate of strength and stiffness 
deterioration, the behavior of the column under both protocols is quite similar in terms of 
rotation capacity, which is considered as the rotation when a reduction in moment capacity of 
20% occurs. 

On the other hand, if a high rate of deterioration (low λ) is considered the column under the 
subduction protocol shows less rotation capacity as compared to the column under the standard 
protocol. This implies that the faster the rate of deterioration, the more significant the expected 
effect of number of inelastic cycles on column behavior.  

 

  

 

  

 

  

           (a)                (b) 

Figure 4.5: Effect of loading protocol and model parameters on column response. (a) Standard 
Protocol. (b) Subduction Protocol 
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A high rate of deterioration is expected on pre-1970 columns due to the fact that they were built 
with lap splices in plastic hinge regions and insufficient transverse reinforcement. Therefore, the 
behavior of these columns would be highly influenced by subduction mega earthquakes. This 
result is consistent with experimental and numerical studies, e.g. Ibarra and Krawinkler (Ibarra 
and Krawinkler 2005b), Borg et al. (Borg et al. 2012), Ou et al. (Ou et al. 2013), Chandramohan, 
et al. (Chandramohan et al. 2013). In those studies were concluded that structural components’ 
capacity and collapse are influenced by the duration of ground motion and the number of 
inelastic cycles.  

4.4 EXPERIMENTAL CASE STUDY 

In order to assess the response of RC bridge column that are seismically deficient, cyclic loading 
protocols can be utilized. This section shows the experimental results of full-scale, square cross 
section, reinforced concrete bridge columns. The specimens and the laboratory arrangement were 
intended to model typical Oregon Bridge columns constructed in the 1950s to mid-1970s as 
illustrated in Figure 4.3. Two different quasi-static cyclic loading protocols were employed to 
evaluate the effect of the proposed loading protocols shown in Chapter 3. 

4.4.1 Test Program 

The experimental program consisted of two test specimens intended to represent full-scale 
models of typical RC bridge columns. The specimens were constructed using the same material 
properties, cross-sectional dimensions and reinforcement ratios. The variable in the testing 
program was the cyclic loading protocol applied at the top of the columns. The performance of 
these specimens was intended to reveal vulnerabilities in existing deficient columns subjected to 
different loading conditions. 

4.4.1.1 Test Specimens 

In order to simplify the analysis and fabrication of the test specimens, the reinforced 
concrete column design was idealized as a cantilever column fixed at one end and free on 
the opposite end. The test setup is representative of the internal loads of a full height 
column due to the assumed location of the inflection point. A sketch of the prototype 
column reinforcement detail and cross section is shown in Figure 4.6. 

The longitudinal reinforcement in each specimen consisted of four #10 bars on four 
corners with #3 stirrups spaced at 12 inches center to center. Lap splices were located at 
the base of the test specimens through the incorporation of 4 dowels. The lap splice 
length was 36 inches, which corresponds to 28 times the diameter of the longitudinal 
steel reinforcement (28db). All reinforcing steel used to construct the test specimens 
consisted of Grade 60 deformed bar conforming to the American Society of Testing and 
Materials (ASTM) designation A615. 

Normal weight concrete was used to construct the test specimens with a target 28-day 
strength of 3500 psi. The concrete cover was 2 inches. Standard compression testing of 6-
inch by 12-inch concrete cylinders was performed at approximately 7-day intervals up to 
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28 days and at the day of test completion. The average of the concrete cylinder tests are 
shown in Table 4.3.  

The columns in the experimental program were given an identification that denoted the 
column condition (A=As-built) and loading protocol (SU = Subduction, CO = 
Conventional). The identifications for the two columns in the experimental program were 
A-SU, A-CO. 

 Table 4.3: Compressive strength of concrete cylinders for deficient square columns 

Concrete Pour  
Compressive Strength (f’c)  

psi 
7 day 2470 
14 day 2993 
21 day 3175 
28 day 3507 

Specimen A-SU 
(test day) 

4171 

Specimen A-CO  
(test day) 

4415 

 

 

Figure 4.6: Geometry and reinforcement of RC Bridge column specimens 

4.4.1.2 Test Setup and Instrumentation 

The columns were tested in the upright position. The top of the column was free to 
translate and rotate. The cyclic lateral loading was applied through a horizontal hydraulic 
actuator connected to steel beam on top of the column. The lateral force was applied 
under displacement control. The applied lateral load was reacted against a steel reaction 



 

53 

frame connected to the laboratory strong floor. Load cells were used to monitor the 
applied load during testing.  

Axial load on the column was applied in an effort to simulate the dead loads from the 
superstructure. The applied axial load was approximately 7 percent of the axial strength 
(Agf’c). This load was applied through four high-strength rods and four hydraulic rams, 
which were attached to the horizontal steel beam on top of the columns. Load cells were 
used to monitor the applied axial load during testing. The footing was secured to the 
laboratory floor with post-tensioning rods. The rods were placed on four corners of the 
column. A schematic representation of the experimental test set up is shown in . 

Failure of the specimen was defined as a 20% drop in peak lateral load. The yield 
displacement of each specimen was predicted from moment curvature analysis and was 
corrected during the test. The experimental yield displacement (δy) was established by 
using the ratio of the theoretical force at which the concrete reaches a strain of 0.004 to 
the experimental elastic stiffness (Ke), which is calculated as the ratio of the theoretical 
first yield force (Vi) to the displacement measured experimentally (δy’) as illustrated in 
Figure 3.8 

 

Figure 4.7: Test setup configuration 

 

In order to analyze the response of the specimens subjected to cyclic lateral loading, the 
columns were fully instrumented via strain gages and linear variable displacement 
transducers (LVDTs) as shown in Figure 4.8 and Figure 4.9, respectively. Strain gages 
were used to measure the strain at specific points in the specimens. A total of 12 strain 
gages were mounted on the longitudinal reinforcing bars, (2 on the continuous 
longitudinal bars and 10 on the dowels). All strain gages were placed at and below the 
plastic hinge which was theoretically calculated as 26 inches. Installation of all strain 
gages was performed prior to the placement of the concrete. LVDTs were used to 
measure displacements of specified points on the specimen. 
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Figure 4.8: Location of strain gages 

 

Figure 4.9: Location of LVDTs 



 

55 

4.4.1.3 Cyclic Loading Protocol 

As in the numerical case study, for this experimental program two types of loading 
protocols were used, namely, conventional cyclic loading protocol and subduction zone 
loading protocol. The modified New Zealand protocol was used as the conventional 
cyclic loading protocol and the proposed protocol for structures of ductility 8 and 
fundamental period of 0.5 sec was used as the subduction zone loading protocol. 
Protocols with that target ductility were used because the ductility obtained from 
moment-curvature analysis of the column in study was close to 8. Both protocols used in 
the experimental study are shown in Chapter 3. 

4.4.2 Test Results 

4.4.2.1 Column A-CO 

In this column the modified New Zealand conventional protocol was utilized as shown in 
Figure 3.1(b). The column was checked for cracks before the beginning of the 
experimental test in an effort to observe any initial retraction cracking. During the test the 
first crack was initiated as a horizontal crack near the base of the column at small lateral 
displacements (< 0.3 inches). New horizontal cracks were observed on the column faces 
at the base of the column after the first peak displacements. As the test progressed 
numerous horizontal cracks were visible up to the mid-height of the column as shown in 
Figure 4.10(a). 

For column A-CO the primary mode of failure was crushing of concrete at the base of the 
column in conjunction with buckling of dowels as illustrated in Figure 4.10(b) and (c). 
The buckling of the dowels was observed once the cover of the concrete at the base of the 
column was completely crushed. 

 
(a) 

 
(b) 

 
(c) 

Figure 4.10: Damage progression in Column A-CO. (a) Horizontal cracks, (b) Crushing of 
concrete, (c) Bar buckling 
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The lateral load vs. displacement hysteresis curve for the column A-CO is illustrated in 
Figure 4.11. Yield displacement of the specimen was initially calculated as 0.73 inches. 
However, this yield displacement was corrected during the test in an effort to 
accommodate the actual response of the test specimen. In order to make this correction 
the procedure described in Chapter 3 and depicted in Figure 3.8 was utilized. The 
experimental yield displacement was 1.06 inches, which corresponds to a 45% increase 
with respect to the theoretical value. 

The hysteretic behavior of this specimen showed a moderate to high ductile behavior by 
reaching a displacement ductility above 4.5 and 6 in the positive and negative direction, 
respectively. Column A-CO showed a hysteretic response typical of flexural behavior 
with slightly pinching behavior. As expected in the elastic range, slight strength 
degradation between cycles at the same amplitude can be observed before the occurrence 
of the yield displacement. Cycles at the same amplitude after yielding showed notorious 
strength and stiffness degradation. 

The peak lateral load was -46 kip and occurred at a lateral displacement of approximately 
-5.6 inches. The specimen exhibited a significant decrease in lateral strength after the 
peak lateral load because of a noticeable crushing of concrete at the base of the column. 
Failure of the specimen was assumed when the applied lateral load dropped below 80% 
of the peak load. Displacements of 6 inches (ductility 5.7) and -7.75 in (ductility 7.3) 
were computed as the failure displacements in the positive and negative direction, 
respectively. 

 

Figure 4.11: Load vs. Displacement curve of column A-CO 
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4.4.2.2 Column A-SU 

The proposed protocol for structures of ductility 8 and fundamental period of 0.5 sec, as 
shown in Figure 3.7(a), was utilized to test Column A-SU. This column as the previous 
column was checked for cracks before the beginning of the experimental test in an effort 
to observe any initial retraction cracking. During the test the first crack was initiated as a 
horizontal crack near the base of the column at small lateral displacements (< 0.2 inches). 
New horizontal cracks were observed on the column faces at the base of the column after 
the first peak displacements. As the test progressed numerous horizontal cracks were 
visible up to the mid-height of the column as shown in Figure 4.12 (a). Vertical cracks 
consistent with lap splice failure started showing at a displacement of 1.8 inches and the 
cracks width opened up to > 2.0mm at a displacement of 4inches as shown in Figure 
4.12(b). The concrete above the lap splice length showed only minimal signs of vertical 
cracking.  

For column A-SU the primary mode of failure was lap splice failure followed by crushing 
of concrete at the base of the column and buckling of dowels as illustrated in Figure 4.12 
(b) and (c). The buckling of the dowels was observed once the cover of the concrete at 
the base of the column was completely crushed. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4.12: Damage progression in Column A-SU. (a) Horizontal cracks, (b) Crushing of 
concrete, (c) Bar buckling 

The lateral load vs. displacement hysteresis curve for the column A-SU is illustrated in 
Figure 4.13. Yield displacement of the specimen was initially calculated as 0.73 inches. 
However, this yield displacement was corrected during the test in an effort to 
accommodate the actual response of the test specimen. In order to make this correction 
the procedure described in Chapter 3 and depicted in Figure 3.8 was utilized. The 
experimental yield displacement was 1 inch, which corresponds to a 37% increase with 
respect to the theoretical value. 
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The hysteretic behavior of this specimen showed a moderate ductile behavior by reaching 
a displacement ductility of 4.2 and 5.7 in the positive and negative direction, respectively. 
Column A-SU showed an initial hysteretic response typical of flexural behavior.  

Minimum strength degradation was noticed up to the peak load, which was computed as 
44 kip in the positive direction and -46 kip in the negative direction and occurred at a 
lateral displacement of approximately 3.7 and -4.7 inches, respectively. The specimen 
exhibited a significant decrease in lateral strength after both peak lateral loads because of 
a vertical crack that was attributed to lap splice failure. Failure of the specimen was 
assumed when the applied lateral load dropped below 80% of the peak load. 
Displacements of 4.2 inches (ductility 4.2) and -5.7 in (ductility 5.7) were computed as 
the failure displacements in the positive and negative direction, respectively. 

 

Figure 4.13: Load vs. Displacement curve of column A-SU 

4.4.3 Analysis of Results 

4.4.3.1 Comparison to analytical results 

Moment-curvature curves for the columns were obtained by using the Section Designer 
capability in SAP2000, which uses Caltrans specifications. The moment-curvature 
analysis was done by assuming the Mander concrete parametric stress-strain curve for the 
unconfined and confined concrete (Mander 1984) and the Park parametric stress-strain 
curve for reinforcing steel. The conversion from moment-curvature to load-displacement 
was done by using a lumped plastic hinge model assuming a curvature and deflection 
relationship for a reinforced concrete cantilever column developed by Paulay and 
Priestley (Paulay and Priestley 1992). Details of this analysis are presented in the 
appendices. 
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The comparison between experimental and analytical envelope results is shown in   
Figure 4.14 and Figure 4.15. The column A-CO, that was tested using a conventional 
loading protocol, showed an excellent fitting between the experimental and analytical 
load-displacement envelope curves. On the contrary, column A-SU, which was tested 
using a protocol that aimed to mimic the demand imposed by subduction zone mega 
earthquakes, showed less strength and displacement capacity as compared to the 
analytical results.  

 

Figure 4.14: Experimental vs. analytical envelope curves for column A-CO 

 

Figure 4.15: Experimental vs. analytical envelope curves for column A-SU 

4.4.3.2 Comparison between column results 

The column A-SU tested under the subduction loading protocol showed less strength and 
deformation capacity as compared to the column A-CO tested under the conventional 
loading protocol. The fact that column A-SU had less strength and deformation capacity 
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was attributed to the increasing number of low amplitude inelastic cycles that the column 
undergoes by using the subduction protocol. This increase in the number of inelastic 
cycles generated vertical cracks at an early stage of the test that culminated in lap splice 
failure. This result has direct implications in the design of retrofit measures for existing 
RC bridge columns since one would expect less capacity for columns subjected to 
subduction zone earthquakes and is consistent with the numerical case study and with 
previous experimental studies (Takemura and Kawashima 1997) , (Kunnath et al. 1997), 
(Ou et al. 2013). Moreover, the result implies that the common assessment of existing 
bridges by doing pushover analyses might overestimate the actual strength and 
deformation capacity of RC bridge superstructures. 

Despite the seismic detailing deficiencies, the hysteretic response curves showed that 
both columns had moderate ductility and energy dissipation through nonlinear behavior. 
The moderately ductile performance is likely a result of a low axial column load           
(0.07 f’c Ag) and a relative long lap splice (28 db). Even though, this moderate ductility 
was unexpected, similar results were obtained by El Gawady et al. (El Gawady et al. 
2010) for typical deficient columns built prior 1971 in the State of Washington. 

                    (a)           (b) 
Figure 4.16: Hysteretic and envelope response comparison 

4.4.3.3 Stiffness Degradation 

The stiffness degradation is an important property in RC bridges subjected to seismic 
events since it changes the effective natural period of the structure. Stiffness degradation 
can be attributed to concrete nonlinear behavior caused by flexural and shear cracking, 
slippage of steel reinforcement, etc.  

In this study, the normalized stiffness, represented as the secant stiffness divided by the 
yield stiffness, at different displacement ductilities, was utilized as the stiffness 
degradation parameter. In terms of stiffness degradation both test specimens showed 
similar stiffness degradation up to a displacement ductility 4, and there was no significant 
effect of the loading protocol applied on the stiffness degradation up to that ductility as 
depicted in Figure 4.17. However, for ductilities above 4, the column A-SU showed a 
higher stiffness degradation that is concordant with the increasing number of inelastic 
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cycles imposed by the subduction zone protocol and the lap splice failure seen during the 
test.  

Gulkan and Sozen (Gulkan and Sozen 1974) proposed a relation between the 
displacement ductility (µ) and the secant stiffness (ksec) as follows: 

1
1sec 
yk

k
 (4.1) 

Where, ky is the secant stiffness at displacement ductility 1. The test results closely 
follow the predictions obtained using Eq. (4.1).  

 

Figure 4.17: Stiffness degradation 

4.4.3.4 Rotation Capacity 

12 LVDTs located at the base of the columns at heights 4”, 8”, 12”, 16”, 20”, and 24” 
respectively from top of footing, as depicted in Figure 4.9, were used to measure the 
rotation of the specimen. As can be seen from Figure 4.18, the rotation for both columns 
was concentrated at the base, which was a result of a rocking behavior observed during 
the tests. Furthermore, the rotation capacity of 0.05 to 0.06 rad is consistent with the 
rotation capacity calculated in the numerical case study shown in Table 4.2. 



 

62 

 
Figure 4.18: Rotation capacity 

4.5 SUMMARY 

A representative pre-1970 lightly reinforced and lap-spliced bridge column was studied to 
observe the effect of the application of two different loading protocols on the behavior of 
seismically deficient reinforced concrete bridge columns. Observations based on numerical and 
experimental results of applying cyclic loading protocols on seismically deficient RC columns 
can be summarized as follows: 

 Numerical results showed the importance of modeling the rate of strength and 
stiffness deterioration in RC bridges. This is of paramount importance in regions 
susceptible to be struck by subduction zone mega earthquakes since the faster the rate 
of deterioration the more significant the expected effect of number of inelastic cycles 
on column behavior. 

 The experimental results of this study indicate that square columns present in bridges 
built before 1971 in the Pacific Northwest have unexpected deformation capacity. 
This moderately ductile performance of the as-built columns was likely a result of a 
low axial load level (0.07 f’c Ag) and low longitudinal steel reinforcement ratio (ρ = 
1.2%). 

 The experimental study also demonstrated that subduction loading protocols reduce 
the displacement ductility capacity of reinforced concrete columns and change the 
failure mode of columns. The primary mode of failure for the column tested under 
subduction loading protocol was by lap splice failure. On the contrary, Column A-
CO, which was tested using a conventional cyclic loading protocol, failed showing 
crushing of concrete as a primary mode of failure. 
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 Despite the fact that the conventional protocol contains a higher number of large 
inelastic excursion, results showed that the use of the subduction protocol can highly 
influence the response of deteriorating components. Even though, more extensive 
analytical and experimental studies are needed to reach broader conclusions, the 
assessment of bridge columns through representative testing load protocols would 
play a key role in the future establishment of limit states and acceptance criteria to be 
applied in performance-based seismic design of bridge columns.
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5.0 STATE OF THE ART ON RETROFIT MEASURES 

5.1 GENERAL 

Reinforced concrete bridge substructures constructed before 1970 are commonly deficient in 
flexural ductility and shear strength as those bridges were designed primarily for gravity loads 
with little or no design consideration to seismic resistance. RC bridge bents lack sufficient steel 
reinforcement to provide satisfactory performance in a major seismic event. Typically, No. 3 or 
No. 4 hoops at 12 inches on center were provided in columns regardless of the column cross-
sectional dimensions. The stirrups were anchored by 90o hooks with short extensions and 
intermediate ties were seldom used. RC bridges built prior to 1970 also have inadequate lap 
splices in potential plastic hinge zones since dowels were usually extended between 20 to 40 
longitudinal bar diameters (db) from the foundations. This detail may cause a considerable 
reduction on column ductility and a rapid loss of flexural and axial strength. Furthermore, the 
foundations constructed at that time were not design with a capacity design in mind. As a result, 
foundations are highly susceptible to brittle flexural and shear failures since they do not contain 
neither top longitudinal reinforcement nor transverse reinforcement.  

All these details contribute to bridge’ deficiency and make these structures highly vulnerable to a 
major seismic event. This vulnerability of pre-1970 bridges was especially evident in the 1971 
San Fernando, 1989 Loma Prieta earthquake, and the 1994 Northridge earthquake as shown in 
Figure 5.1, Figure 5.2 and Figure 5.3, respectively. Further, the recent occurrence of subduction 
zone mega earthquakes in Chile and Japan has demonstrated how vulnerable RC bridges are 
when subjected to major seismic events as shown in Figure 5.4. 

 

 

Figure 5.1: Poorly Confined Column in 1971 San Fernando Earthquake 
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Figure 5.2: Collapsed Cypress street viaduct in Oakland during the 1989 Loma Prieta Earthquake 
(USGS and Wilshire 1989) 

 

Figure 5.3: Damage in RC columns on the Simi Valley Freeway during the 1994 Northridge 
Earthquake (Teng 1994) 

 

Figure 5.4: Damage in Nakasone viaduct during 2011 Japan earthquake (Kawashima et al. 2011) 

The ability of structures to achieve adequate deformation capacity plays a significant role in the 
prevention of structural failures in seismic events. The deformation capacity of existing bridges 
can be enhanced by modifying certain substructure elements and connections. Various retrofit 
and strengthening techniques have been developed and implemented. For example, bridge 
columns can be retrofitted using various techniques including reinforced concrete jacketing, steel 
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jacketing, active confinement by prestressing wire, and composite fiber/epoxy jacketing, etc. 
Techniques to retrofit other bridge members have also been developed (FHWA 2006), (Wright et 
al. 2011) as shown in Figure 5.5 and Figure 5.6 for bent caps and footings, respectively.  

The main goal of any seismic retrofit measure is to minimize structural collapse, while meeting 
certain performance requirements. Nowadays, the number of available retrofit measures has 
increased markedly as a result of extensive analytical and experimental studies. In this chapter 
conventional and emerging retrofit measures capable of improving the seismic resistance of 
deficient RC bridge substructures built before 1970 in the State of Oregon are presented and 
discussed. It is worth noting that retrofit measures that aim to decrease the force demand on the 
bridge through the implementation of isolation devices is not discussed in this study since the 
objective of the retrofit proposed in this study was to decrease displacement demands.  

     

    (a)            (b) 

Figure 5.5: Retrofit measure for bent caps. (a) Posttensioned rods. (b) Steel Jackets. (Wright et 
al. 2011) 

     

Figure 5.6: Footing overlay on Hernando-Desoto Bridge (photo: R.A. Imbsen) 

5.2 RETROFIT MEASURES FOR RC COLUMNS 

Previous research studies have shown that the main factors causing RC bridge column failures 
are their insufficient flexural and shear capacity added to a lack of concrete confinement and lap 
splice at expected plastic hinge regions at the base of the columns. (Chai et al. 1991), 
(Dyngeland 1998). In order to overcome these deficiencies many retrofitting systems have been 
developed and experimentally validated. Most of the retrofit measures for RC columns aim to 
improve the column ductility, shear strength and provide confinement by “Jacketing” the column 
through the use of various materials. These methods have now been implemented on a large 
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number of deficient bridges throughout seismic regions and have helped preventing bridge 
failures in major seismic events. (Kawashima et al. 2011), (Hoshikuma and Guangfeng 2013). 

5.2.1 Concrete Jacketing (Concrete Overlays) 

Concrete jacketing was the first method to be employed as a jacketing retrofit measure in 
practice since 1980. Its application was mainly for RC buildings in Japan as reported by Hayashi 
et al. (Hayashi 1980) and Sugano (Sugano 1981). The concrete jacketing retrofit measure 
consists of encasing the existing reinforced concrete column with a jacket of concrete reinforced 
with longitudinal steel and drilled and grouted dowels or welded wire fabric. Its application 
follows the same principles as any concrete design. Concrete jackets have been primarily used 
for retrofitting existing RC columns in buildings. However, its use in bridges has been limited 
mainly because its labor intensive and more efficient retrofit measures has been implemented for 
those structures. An example of concrete jacketing for bridge columns is shown in Figure 5.7. 

Multiple experimental investigations and field applications have shown that concrete jackets 
significantly improve the strength and stiffness of as-built columns (Hayashi and Fukuhara 
1980), (Teran and Ruiz 1992), (Rodriguez and Park 1994), (Bracci et al. 1995). However, an 
increase in column flexural strength results in increased shear capacity, and consequently in an 
increased force transfer to cap beams and footings (FHWA 2006). Therefore, special attention 
needs to be placed in those components since undesirable effects can be generated on bridge 
performance.  

 

    

        (a)               (b) 

Figure 5.7: Concrete Jacketing. (a) Concrete overlay squematic (FHWA 2006), (b) Concrete 
jacketing of a column in Illinois (Poplar Street Complex) 

5.2.2 Steel Jacketing 

Steel jacketing was originally developed as a retrofit measure for circular columns in the early 
90s and since then it has been largely utilized for the retrofitting of deficient columns in 
California (Caltrans 1996) and lately throughout the United States.  

Previous research studies (Chai et al. 1991) have shown that steel jacketing is an effective 
retrofit technique for seismically-deficient concrete columns. Based on satisfactory laboratory 
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results, steel jackets have been employed to retrofit both circular and rectangular columns as 
shown in Figure 5.8. For circular columns, the recommended procedure is to cover the entire 
column or portion of it with two steel plate half-shells slightly oversized for easy installation 
leaving two vertical seams that are later welded. The gap between the column and the jacket is 
filled with grout to provide the required confinement action. An additional gap is required when 
the full height of the column is steel jacketed in order to minimize flexural strength 
enhancement, which may cause an undesirable increase in the forces developed in adjacent 
members. With rectangular columns, the recommended procedure is to use an elliptical shape 
jacket, which provides continuous confining action similar to that for a circular column. For both 
cases, the steel jacket acts as a passive confinement, i.e. the steel jacket only provides 
confinement once the concrete column starts expanding under compressive stresses that induces 
circumferential stresses in the steel shell. Detailed design guidelines for steel jacketing are found 
in the Seismic Retrofitting Manual for Highway Structures (FHWA 2006) and in Chai et al. 
(Chai et al. 1992). Steel jackets are effective in enhancing the confinement of the column, thus 
increasing the compression strength and strain. Additionally, these jackets can improve column 
ductility by eliminating the brittle shear and bond mode of failure attributed to a lack of shear 
reinforcement and lap splices at the base of columns, respectively. The failure mode is 
consequently shifted to a flexural mode. An undesirable effect of column jacketing is that its 
application may increase column stiffness. Studies have suggested that this increase could be 
approximately 10–15% for the case of partial height jackets (Chai et al. 1991) and 20–40% for 
the case of full height jackets (Priestley et al. 1996). This increase in column stiffness may 
attract higher forces in the bridge and result in increased forces into bent caps and footings. 

               

             (a)           (b) 

Figure 5.8: Steel Jacketing for; (a) circular columns in bridge along Interstate 5, Seattle (photo: 
Lucia Bill), (b) rectangular column in bridge State Route 24 eastbound, San Francisco. Left: 

retrofitted column. Right: As-built column (photo, Leonard G.) 

5.2.3 Composite Jacketing 

Retrofit measures using composite materials has considerable grown since the past decade. The 
preferred composite material for retrofit application is Fiber Reinforced Polymers (FRPs), which 
consists of high strength glass, carbon, or aramid fibers bound in an epoxy resin matrix. Recent 
developments in the manufacturing of fiber reinforced polymer (FRP) composite materials have 
made these materials available for a wide range of applications, including seismic retrofit of 
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reinforced concrete columns. Compared to steel and concrete jacketing, FRP wrapping has 
several advantages, including very low weight-to-strength ratios, high elastic moduli, resistance 
to corrosion, and ease of application. FRP can improve column ductility without considerable 
stiffness amplification while maintaining the bridge dynamic properties (Haroun and Elsanadedy 
2005). As mentioned before, carbon fiber reinforced polymer (CFRP), glass fiber reinforced 
polymer (GFRP) and aramid fiber reinforced polymer (AFRP) are the most commonly used FRP 
composite materials. CFRP has a higher modulus of elasticity and has the highest tensile 
strength. The Washington State Department of Transportation recommends using CFRP to 
retrofit bridges because it is less affected by moisture than GFRP (WSDOT 2006). 

Several analytical and experimental studies involving retrofitting of columns using FRPs can be 
found in the literature. To name some, Seible et al. (Seible et al. 1995) describes the jacket 
design aspects, jacket installation, full-scale field tests and behavior performance of carbon 
jacket retrofits. Xiao et al. (Xiao et al. 1999) reported on testing of three large-scale bridge 
column tests, in which two were retrofitted using a prefabricated composite wrapping system. 
The results of both studies showed that composite jacketing was a viable retrofit measure for 
shear enhancement and ductility improvement. Finally, Teng et al. (Teng et al. 2001) provides an 
excellent overview of the use of advanced composites in the seismic retrofit of concrete 
structures and its use in Civil Engineering. 

FRP retrofit systems can be effectively used for circular columns since circular jackets provide a 
continuous confinement pressure. On the contrary, for rectangular columns the FRP jacket 
provides less confinement pressure since its confinement effectiveness is concentrated in the 
corners only. However, recent studies at Portland State University (Mehary et al. 2014) showed 
that seismically deficient square reinforced concrete columns can be effectively retrofitted using 
Carbon Fiber Reinforced Polymer (CFRP). The objective of that study was to mitigate the 
damage effect that an increasing number of inelastic cycles imposed by subduction zone mega 
earthquakes has in RC columns. The CFRP composite material called Tyfo®SCH-41 was used 
for retrofitting the square RC column. Three layers of this composite material was utilized to 
wrap the base of the column up to 36 inches high in an effort to improve the confinement of the 
column and prevent lap splice failure at a potential plastic hinge location as shown in Figure 
5.9(a). It is worth noting, that the column corners were chamfered prior the installation of the 
FRP wrap in order to avoid stress concentrations at the corners and improve the effect of the FRP 
confinement. The results of the experimental study demonstrated that the CFRP retrofit measure 
considerably enhanced the displacement ductility of the column without greatly increasing 
column strength as depicted in Figure 5.9(b). This result is relevant in the evaluation of the other 
bridge components since an increase in column strength would result in an increased force 
transfer to cap beams and footings. The retrofit also helped inhibit bond failures in lap splices 
and provided passive confinement producing very minimal spalling of concrete at the end of the 
test.  
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(a) 

 

(b) 

Figure 5.9: Composite jacketing of a deficient square RC column. (a) Installation of CFRP, (b) 
Results (Mehary et al. 2014) 

5.2.4 External Prestressing Steel 

Different that the retrofitting systems presented before, which rely in passive confinement, the 
external prestressing steel acts by providing external confining forces into the column. In this 
retrofit measure, external prestressing steel wires under tension are wrapped around a column to 
achieve confinement. This retrofit method has successfully increased the flexural ductility of 
circular columns with lap splices at the critical section, but its effect on shear strength has not yet 
been quantified (FHWA 2006). 

An advantage of this practice is that it does not affect the flexural strength and stiffness of the 
columns. However, the high cost of designing a machine that is big enough to produce the 
required tension to wrap prestressing wire around the columns makes it uneconomical. 
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Saatcioglu and Yalcin (Saatcioglu and Yalcin 2003) applied external prestressing to columns in 
transverse direction using individual hoops that consist of prestressing strands and specially 
designed anchors. They tested the columns under constant axial compression and incrementally 
increasing lateral deformation reversals. Their results show that this retrofit methodology can 
mitigate shear failure, increase flexural capacity and inelastic column deformability. 

Recent development in material sciences has allowed engineers the use of new materials for the 
retrofitting of RC columns. For example, shape memory alloys have been recently studied to 
achieve an active confinement for the retrofitting of RC bridge columns (Andrawes et al. 2010).  

 

Figure 5.10: External prestressing steel retrofitting of columns in Illinois 

5.3 RETROFIT MEASURES FOR RC BRIDGE BENTS 

Although the retrofit measures discussed in the previous section are also applicable for RC 
bridge bents, this section presents retrofit alternatives that aim to improve the overall behavior of 
RC bents more than just improving a specific component.  

5.3.1 Infill Walls 

Adding shear walls or braced systems in RC structures has been commonly used as strengthening 
method. Figure 5.11 illustrates different methods used for retrofitting of RC frames in buildings. 
Steel braced frames and post-cast wall, also referred to as infill shear wall as shown in Figure 
5.12 (FHWA 2006), are the most efficient retrofit measures in terms of enhancing transverse 
shear capacity. However, it is clear that the steel framed brace is more effective since it also 
enhances displacement capacity. Despite this fact, infill walls have been commonly applied to 
retrofit multi-column RC bridge bents due to their lower cost and familiar implementation in the 
field.  

Moreover, Pulido et al. (Pulido et al. 2004) performed shake table testing of a ¼ scale as-built 
bent representing typical bridge bents constructed before the 1970s and an identical specimen 
retrofitted with an infill wall. The results of this study showed that the use of infill walls can 
enhance the seismic performance of the as-built bent by increasing both the strength of the bent 
and its ductility.  
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Figure 5.11: Effect of different retrofit measure for RC frames. (Sugano 1981) 

     

   (a)       (b) 

Figure 5.12: Infill wall, (a) schematic, (b) Installation on West Lake Sammish Parkway (photo: 
L.M. Marsh) 

5.3.2 Steel Bracing 

Several analytical and experimental studies have been conducted on the use of steel bracing as a 
seismic retrofit technique for RC frame buildings (Badoux and Jirsa 1990), (Yamamoto and 
Umemura 1992). However, its implementation in bridges has been limited to steel diaphragms 
and steel bridges (Itani 1996).  

Current research into seismic retrofitting with steel bracing mostly involves adding supplemental 
damping devices in an effort to minimize the increase in strength that the retrofit measure would 
impart to the rest of the components of the structure (McDaniel 2006). Among the damping 
devices that have been proposed for seismic retrofitting of structures can be found friction 
dampers, viscoelastic dampers and hysteretic dampers.  
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This study, as addressed in the next chapters, presents the design implementation and 
experimental results of retrofitting deficient RC bridge bents by adding steel bracing in form of 
hysteretic dampers.
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6.0 STRUCTURAL FUSES AS SEISMIC RETROFITTING 
MEASURE FOR MULTI-COLUMN RC BRIDGE BENTS 

6.1 GENERAL 

Current seismic retrofitting manuals and guidelines for existing highway structures in the United 
States are based on a performance-based design methodology, which uses a multiple-level 
approach to performance criteria with two seismic hazard levels (FHWA 2006). In this 
methodology, damage states can be presented in terms of physical damage and strain limits or 
curvature limits. Therefore, engineers designing retrofit measures for improving the seismic 
resistance of standard existing bridge substructures need to ensure that the structure remains 
operational under a moderate earthquake and that life safety is preserved after a large earthquake. 
Seismic retrofit measures including steel jacketing and fiber composite wrapping have been 
typically utilized to improve the ductility and shear resistance of reinforced concrete 
substructures. However, these measures neither prevent damaging of columns nor excessive 
displacements, which in some cases could result in not meeting the intended performance level. 
In order to overcome this problem, this chapter discusses the option of using sacrificial elements 
also referred to as structural fuses as a retrofit measure for reinforced concrete bridges. 

6.2 ACTUAL SEISMIC RETROFIT DESIGN PHILOSOPHY 

After the devastating earthquakes in San Francisco, CA in 1971 and Loma Prieta, CA in 1989, 
the American Association of State Highway and Transportation Officials (AASHTO) adopted a 
forced-based design methodology, which were based largely on design criteria developed by the 
California Department of Transportation (Caltrans). Over the years, it became evident that this 
methodology did not provide a rational assessment of displacement demand/capacity needed for 
bridge structures. Consequently, AASTHO modified this methodology for a displacement-based 
criteria (AASHTO 2009). This new methodology uses a design earthquake with 7 percent 
probability of exceedance in 75 years (Approx. 1000-year return period) and four seismic design 
categories (SDC). Under the AASHTO code requirements bridges are primarily designed to meet 
a standard performance level based on a life-safety approach, which means the bridge has a very 
low probability of collapse when subjected to earthquakes that are most likely to occur over the 
life of the structure. Nowadays, the seismic design philosophy of bridges is trending to a 
performance-based design, in which different performance levels need to be satisfied under 
representative seismic hazards. For seismic retrofit of bridges the Federal Highway 
Administration (FHWA) released a performance-based guideline in 2006, which uses a multi-
level performance criteria. Following the FHWA steps a few Departments of Transportation 
(DOTs) have adopted seismic design performance criteria in their manuals and regulations. This 
is the case for the Oregon Department of Transportation (ODOT), which for both new and 
existing bridges adopted a two-level performance criteria (ODOT 2014). The two-level 
performance criteria for existing bridges are “Life Safety” under a 1000-year event and 
“Operational” under a 500-year event, following the guidelines described in the FHWA 
Retrofitting Manual (2006). For new bridges ODOT requires the same dual performance levels 
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but some modifications to the design requirements were made depending on the Seismic Design 
Category (SDC). The inclusion of this additional lower level performance criteria 
(“Operational”) is above the standard performance requirements prescribed by AASHTO.  

6.3 STRUCTURAL FUSE RETROFIT STRATEGY 

The recent occurrence of highly devastating earthquakes near instrumented regions, e.g. 2010 
Maule, Chile and 2011 Tohoku, Japan, has again shown the vulnerability of RC bridges 
subjected to subduction zone mega earthquakes. Nowadays, extensive research on structural 
damage control concepts has taken place in order to develop more effective and reliable retrofit 
strategies for existing structures subjected to strong ground motions. One alternative that has 
attracted the focus of current investigations is the use of structural fuses. This structural fuse 
retrofit concept consists of integrating replaceable components in the main structural system in 
such a way to restrict the damage undergoing for the primary structure after a damaging 
earthquake (Connor et al. 1997). The replaceable elements are designed to take the earthquake-
induced energy and dissipate it through nonlinear hysteretic behavior, meanwhile, the remaining 
structure is expected to behave elastically. This study discusses the inclusion of steel braced 
systems such as Buckling Restrained Braces (BRBs) and Eccentrically Steel Braced Frames 
(EBF) as structural fuses for the retrofitting of seismically deficient RC bridge bents. The 
motivation of this retrofit strategy is basically to help overcome the imminent risk of extensive 
damage in deficient bridge bents constructed in the 1950 to mid-1970 in the Pacific Northwest, 
and consequently to satisfy the aforementioned performance criteria for deficient existing RC 
bridges. 

6.4 STRUCTURAL FUSES FOR BRIDGES 

The retrofit strategy adopted here is focused in the transverse direction and is based on 
employing two independent structural systems. The reinforced concrete multi-column bent, 
which is the primary system and supports the vertical loading; and a replaceable system that add 
lateral stiffness and functions as the seismic energy dissipation device. For the retrofitted bridge 
bent system, the fuse system could be either a Buckling Restrained Brace System (BRB) or an 
Eccentrically Braced Frame System (EBF), which are designed to dissipate energy through 
nonlinear hysteretic behavior; meanwhile, the RC bent and connections are designed to remain 
elastic. This structural concept has potential advantages over conventional retrofit systems. Some 
of them are:  

 Since the gravity resisting system is designed to remain elastic after a major 
earthquake event, higher performance levels can be achieved for the 500-year and 
1000-year events. 

 Energy dissipation through stable nonlinear hysteretic behavior. 

 The stiffness of the system is increased providing a drift-controlled system 

  Ideally, the sacrificial elements can be easily replaced, minimizing the repair time 
and allowing uninterrupted service in the bridge 
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 By forcing the inelastic demand to the fuses, the behavior of the system becomes 
more predictable.  

The system is not exempt of disadvantages and challenges. For example, special assessment of 
elements capacities needs to be performed since the forces in the system may increase due to the 
added strength and stiffness of the replaceable element. Moreover, the connection design 
between steel and concrete components also need special attention. 

In the longitudinal direction, depending on the type of abutment, the bridge can engage the 
abutments that significantly influence the deformation demand. This is the case for bridges with 
integral and semi-integral abutments where the passive resistance of the soil against the backwall 
increases the seismic force transferred to the abutment backfill, and decreases the seismic 
demands on the bridge bents. While the longitudinal direction is important to consider, 
procedural details have not been included in this study. 

6.4.1 Buckling Restrained Brace systems (BRB) 

Buckling restrained braces were introduce in the US in the late 1990’s and several experimental 
tests and post-earthquake reconnaissance in multi-story framed buildings have shown that these 
structures may be efficiently retrofitted using BRBs. The main characteristic of a BRB is its 
ability to have a stable hysteretic response through yielding both in tension and compression due 
to the prevention of global buckling as shown in Figure 6.1 (Clark et al. 1999). This inherent 
property of providing higher hysteretic energy dissipation makes BRBs a good candidate in 
seismic retrofit applications, where the main structure can be designed to respond elastically and 
the braces become disposable elements capable of absorbing and dissipating the earthquake-
induced energy. As with any metallic dissipation device, BRB behavior depends on its geometry 
and mechanical characteristics and its effectiveness depends on its energy dissipation capacity. A 
typical BRB anatomy is illustrated in Figure 6.2. 

 
 

Figure 6.1: Hysteretic behavior of a BRB. (Clark et al. 1999) 
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Figure 6.2: Schematic of a Buckling Restrained Brace (BRB) 

Despite the increasing use of this system for buildings, its use has not been realized for bridge 
structures. Few BRB applications in bridges can be found, e.g. feasibility of using BRBs for the 
Vincent Thomas Bridge in Long Beach, California (Lanning et al. 2011) and seismic retrofit of 
California’s Auburn-Foresthill Road Bridge (Reno and Pohll 2010). However, none has been 
implemented for seismic retrofitting of common reinforced concrete multi-column RC bridge 
bents. The objective of this research is to advance the seismic retrofit of reinforced concrete 
bridges subjected to moderate and large earthquakes by using buckling restrained braces (BRBs) 
as a retrofit measure. For the retrofitted bridge bent system, the BRB is designated as the “fuse or 
replaceable” element and the RC bent is designated as the primary system as shown in Figure 
6.3. The proposed configuration consists of a single diagonal brace (Figure 6.3(b)) but its use is 
not limited to that configuration as shown in Figure 6.3(c). This approach has the potential to 
improve the overall seismic behavior and the expected performance levels especially under 
performance driven design criteria. 

 
       (a)     (b) 

 
(c) 

Figure 6.3: BRB retrofit configuration. (a) Structural fuse schematic. (b) Diagonal configuration. 
(c) Chevron configuration 
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6.4.2 Eccentrically Braced Frames (EBF) 

Eccentrically Braced Frames are a lateral load resisting system where the inelastic behavior is 
concentrated in a specific member referred to as “link”. During a major seismic event the link is 
subjected to inelastic deformations in shear and flexure, meanwhile the other components remain 
essentially elastic. The link demands in shear and flexure are generated by the eccentricity 
formed between the intersection of the centerlines of adjacent beam, brace and columns as 
shown in Figure 6.4. For the structural fuse concept the link is designated as the structural fuse 
element. 

 

Figure 6.4: Different EBFs configurations. (AISC 2010) 

EBFs as well as BRB present a stable hysteretic response, which may be translated to higher 
hysteretic energy dissipation, making EBFs and BRBs good candidates in seismic retrofit 
applications. The hysteretic behavior of an EBF system is depicted in Figure 6.5 (Manheim 
1982). Eccentrically Braced Frames gained considerable attention and numerous analytical and 
experimental studies were carried in the 1980’s. An excellent introduction and overview of the 
behavior of eccentrically braced frames can be found in Popov and Engelhardt (Popov and 
Engelhardt 1988). 

 

Figure 6.5: Hysteretic behavior of EBF system. (Manheim 1982) 

This type of retrofit measure has not been implemented in bridge substructures since its 
application has been limited to bridge decks and buildings. Furthermore, the implementation for 
retrofitting RC structures found in the literature is limited to analytical and experimental studies 
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(Bouadi 1994), (Ghobarah and Elfath 2001). Among the scarce experimental studies involving 
EBF as a retrofit measure for RC structures, Mazzolani (Mazzolani 2009) carried out the testing 
of three EBF with vertical shear links as shown in Figure 6.8. Mazzolani concluded that a stable 
behavior and excellent ductility of the whole system can be achieved by the inclusion of 
eccentrically brace frames. 

   

Figure 6.6: Experimental study of using EBF system to retrofit RC structures. (Mazzolani 2009) 

6.5 DESIGN IMPLEMENTATION OF STRUCTURAL FUSES 

6.5.1 General Design Implementation 

As in any design, in order to retrofit deficient RC multi-columns bridge bents by using structural 
fuses is necessary to iterate until all the limit states of each component are verified and a proper 
design is achieved. For this purpose a retrofit procedure needs to follow at least 4 primary steps 
as shown in Figure 6.7 and described below.  

1. Assessment of the as-built RC bent. The capacity of the bare bent and the demand 
obtained from two seismic hazards (500 and 1000-year events) need to be assessed 

2. Sacrificial element design following the structural fuse concept. Select location and 
configuration. Determine stiffness and member dimensions. 

3. Connection Design. The connection between sacrificial elements to gusset plate and 
gusset plate to concrete components need to be performed. 

4. Column, cap beam and footing capacity check is needed to ensure that the primary 
system remains elastic or with minor damage after the dual seismic demand. 
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Figure 6.7: Structural fuse design implementation 

6.5.1.1 Assessment of the as-built RC bent 

In this step, the capacity of the bare bent and the demand obtained from two seismic 
hazards (500 and 1000-year events) need to be assessed.  

The as-built RC multi-column bridge bent capacity and demand need to be assessed. A 
general pushover analysis is required to determine the capacity curve of the RC bent as 
shown in Figure 6.8.  

For the general pushover is required to use the material properties from actual testing or 
by assuming expected properties. Expected material properties can be determined by 
applying factors to the specified properties. Factors of 1.3 and 1.1 are recommended in 
the literature for the compressive strength of concrete and the yield stress of steel, 
respectively. It is worth to mention that a general pushover analysis is suitable in this case 
since the first mode usually controls the behavior of RC bridge bents in both the 
transverse and longitudinal directions.  

The demand is obtained from subjecting the bare bent to two seismic hazards, which are a 
500-year event (14 percent probability of exceedance in 75 years) and a 1000-year event 
(7 percent probability of exceedance in 75 years). An elastic analysis of an equivalent 
single degree of freedom system by using the response spectrum from each event and 
applying a displacement magnification (Rd) for short-period structures as per AASHTO 
(AASHTO 2009) is required as follows: 
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Where, Te is the fundamental period of the SDOF system; Sa is the spectral acceleration 
given by the respective response spectrum; g is the standard gravity constant; m is the 
inertial mass of the system, Ks is the stiffness of the system, Ts is the period at the end of 
constant design spectral acceleration plateau and µD is the maximum local member 
displacement ductility demand. AASHTO states that µD may be taken as 6. 

 

Figure 6.8: Assessment of as-built RC bent 

6.5.1.2 Structural Fuse Concept Design 

The structural fuse concept design procedure is similar to the one proposed by (Vargas 
and Bruneau 2009) for buildings and El-Bahey and Bruneau (El-Bahey and Bruneau 
2011) for bridges but with some modifications. The design concept, as already stated, 
needs that the primary structural system remains essentially elastic after a major 
earthquake. In order to fulfill this design concept and satisfy the performance criteria for 
existing bridges described in the FHWA (FHWA 2006) guideline, the fuse component 
needs to be designed in such way to reduce the demands on the bare frame, which ideally 
would respond elastically under the 500-year and 1000-year event. However, due to the 
increased forces in the system, in some cases the demands in the concrete elements 
exceed their capacity making the design of the fuse infeasible. For that reason, minor 
inelastic excursions are allowed to occur under the 1000-year event as shown in Figure 
6.9. A maximum displacement of 140 percent the yield displacement is recommended. 
This displacement is recommended in an effort to limit the damage and still provide for a 
system ductile response. 

For the fuse behavior is assumed a bi-linear response with hardening as depicted in 
Figure 6.9. The strength hardening effect is important to represent since it increases the 
demands in the concrete elements. Important parameters in the fuse contribution are the 
yield displacement of the fuse (δy

Fuse), the lateral force at that displacement (Vy
Fuse), the 

initial stiffness (ki
Fuse) and any over-strength factor affecting the hardening of the fuse.  
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Figure 6.9: Idealized structural fuse retrofit design 

The first step to design the structural fuses is to set the following parameters:  

 Material properties (fy, Es) that are limited to commercial products 

 Configuration of the fuse system (Lb, θ) that is limited by the existing bridge 
dimensions.  

The following step, as first iteration, is to set the displacement demand from the 1000-
year event equal to or less than 1.4 times the yield displacement of the bare frame (δy

B) 
extracted from the assessment of the as-built RC bent as shown in Eq. (6.2).  
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The system composed by the RC bent and the structural fuse can be analyzed as a system 
in parallel. In such configuration, the displacement in global coordinates (δ) is the same 
for both the RC bent and the structural fuse. The strength (V) and stiffness (K) of each 
element is added to obtain the system strength and stiffness as follows: 

 FuseBR VVV     (6.3) 

 
Fuse

i
B

is kkK     (6.4) 

The initial stiffness of the as-built RC bent (ki
B) can be directly determined from the 

pushover curve or by using an elastic analysis assuming crack sections as shown in Eq. 
(6.5). 
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Where, Ecc and Ecb are the modulus of elasticity of concrete in the column and beam 
respectively; Ic,crack is the cracked inertia of the column; Ib and Ic are the inertia of the 
beam and column respectively; H is the height of the bent; L is the span of the bent and ρ 
is a modification factor that take into account that the cap beam is not infinitely rigid. 

Since the demand depends on the fundamental period of the system, the structural fuse 
design, as discussed in this paper, is reduced to iterate until the stiffness of the fuse 
system is determined. Consequently, the steel core area and the reduced length section 
(Lc) of the BRB are obtained as follows: 
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The final implementation and design is recommended to be in coordination with the fuse 
manufacturer. This is because some of the parameters needed for the structural fuse 
design are dependent on the design of the fuse itself and may differ from manufacturer to 
manufacturer.  

6.5.1.3 Connection Design 

Any steel to gusset plate connection shall be designed to resist the demands based on 
adjusted strengths in an effort to satisfy capacity design concepts as per AISC (2010).  

  yyad PRP       (6.7) 

Where, Pad is the adjusted strength; Ω is an over-strength factor; Ry is the ratio of the 
expected yield stress to the specified minimum yield stress (usually taken as 1.1) and Py 
is the yield strength of the connecting member. Over-strength factors shall be obtained 
from a qualification test or provided by the manufacturer. 

The limit states that need to be checked for the design of the gusset plate according to 
AASHTO (AASHTO 2009) and AISC steel manual (AISC 2011) are: tensile yielding of 
Whitmore section, tensile rupture of Whitmore section, block shear in tension, buckling 
in compression, yield moment strength, plastic moment strength, weld/bolts for gusset to 
brace connection, and buckling of unsupported edge. For bolted connections is 
recommended the use of slip critical connections.  

Anchor rods are recommended for connecting the gusset plate with concrete elements. 
The design forces are obtained from the adjusted strength and the correspondent gusset 
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plate free body diagram. According ACI318 Appendix D (ACI318 2011), tensile and 
shear strength must be considered in the connection design. For tensile strength, five 
possible failure modes can appear in this load direction, namely, steel failure of anchor in 
tension, concrete breakout, pullout, concrete side-face blowout, and concrete splitting. 
For shear strength, three failure modes are considered, namely, steel failure in shear, 
concrete breakout and concrete pryout. The failure modes in tension and shear mainly 
depend on steel grades, bolt spacing, concrete cover and bolt embedment. Additionally, 
for anchors that are subjected to both shear and tension a shear-tension interaction shall 
be satisfied. 

6.5.1.4 Capacity Check 

Due to the incorporation of structural fuses, the internal forces in the concrete elements 
may increase considerably. This is particularly important when an oversized steel 
member is used. For that reason, a capacity check of the RC elements is crucial for the 
success of the design concept. The capacity of concrete elements can be computed by 
using the requirements in AASHTO (AASHTO 2009) and need to be compared to the 
internal forces generated from the adjusted load. If the strength requirement of any 
concrete element is not satisfied, a new structural fuse design iteration is required. 
Moreover, at the ultimate damage state the formation of plastic hinges has to be verified 
in order to avoid any undesirable mechanism of collapse. 

6.5.2 Implementation Using BRBs 

For the BRB implementation a bi-linear response with hardening is utilized as illustrated in 
Figure 6.10. The BRB parameters are the steel core area (Asc), the steel core yield strength (fy), 
the initial stiffness (ki

BRB) that as first approximation can be assumed as the stiffness provided by 
the reduced section, the over-strength factors in tension (ω) and compression (βω), steel core 
elongation at initial yield (Δy), the elongation at the design story drift that as a first 
approximation can be assumed as 7.5 Δy (ΔBM), the axial yield strength of steel core (Pysc) and 
the adjusted brace strength (Pad). 

Additional transformation for the BRB parameters is needed depending on the BRB 
configuration. The proposed configuration consists of a single diagonal brace. Thus, the 
aforementioned BRB parameters that are in a local coordinate system can be transformed to a 
global coordinate system as shown in Figure 6.11 and using equations (6-8) to (6-12). 

The relation between the elongation of the BRB (Δ) and the lateral displacement of the bent (δ) 
is given by Eq. (6.8) 

 
)cos(

 
      (6.8) 

At yield, the stress-strain relationship for the BRB is given by Eq. (6.9). Where, fy is the yield 
stress, Es is the modulus of elasticity of steel and εy is the strain at yield. Furthermore, the strain 
at yield is assumed as the strain produced at the reduced section (Lc). 
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Therefore, the BRB yield displacement (δy
BRB) is obtained substituting Eq. (6.9) into Eq. (6.8), 

which yields Eq. (6-10)  
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Finally, the stiffness and strength contribution to be used in the structural fuse design, as 
presented in Section 6.5.1.2, is determined by using Equations (6.11) and (6.12). 
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Figure 6.10: BRB idealized behavior 
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Figure 6.11: BRB parameters trasformation 

Since the demand depends on the fundamental period of the system, the BRB design, as 
discussed in this study, is reduced to iterate until the BRB stiffness is determined. Consequently, 
the steel core area and the reduced length section (Lc) of the BRB are obtained as follows: 
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The final implementation and design is recommended to be in coordination with a BRB 
manufacturer. This is because some of the parameters needed for the BRB design are dependent 
on the design of the brace itself and may differ from manufacturer to manufacturer. Also, it is 
worth to mention that in many practical cases the design would result in short reduced sections of 
the BRB, making not valid the assumption that the BRB stiffness is solely given by the reduced 
section. Thus, an effective stiffness for the BRB (keff

BRB) can be used instead as follows: 
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Where, k2
BRB is the stiffness of the non-reduced section of the steel core. This effective stiffness 

can be provided by the BRB manufacturer. 

For the design of connections between BRB to gusset plate, this shall be designed to resist the 
demands based on the adjusted brace strength as per AISC (AISC 2010). 

 yscyad PRP       (6.16) 

Where, Pad is the adjusted brace strength; βω is the over-strength factor in compression; Ry is the 
ratio of the expected yield stress to the specified minimum yield stress (usually taken as 1.1) and 
Pysc is the axial yield strength of steel core. Over-strength factors shall be obtained from a 
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qualification test or provided by the manufacturer. However, an initial assumption of 1.45 for βω 
can be used. 

6.5.3 Implementation using EBFs 

In order to design an EBF as a retrofit measure using the structural fuse concept, the procedure 
described in Section 6.5.1.2 shall be followed. As a result of that procedure, the initial stiffness 
and strength of a potential EBF is obtained. The first member to be sized on an EBF is the link as 
shown in Figure 6.12 for a K-braced EBF and Eq. (6.17).  Different EBF configurations are 
shown in Figure 6.4. 

 

Figure 6.12: Free body diagram for a K-braced EBF 

 EBFLink V
L

H
V       (6.17) 

Where H, is the height of the EBF and L is the span. Both dimensions are limited by the existing 
bridge dimensions. Hjelmstad and Popov (Hjelmstad and Popov 1983) carried out studies to 
assess the seismic behavior of EBF. They found the variation of the elastic lateral stiffness of an 
EBF as a function of the link length, e as depicted in Figure 6.13 for two configurations. It is 
clear that short links provide the maximum possible frame stiffness. However, links that are too 
short are subjected to excessive inelastic deformation demands.  

 

Figure 6.13: Effect of link length, e, in elastic lateral stiffness (Hjelmstad and Popov 1983) 
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The design of the EBF system and the other steel members (braces, beams and columns) shall 
follow the AISC Seismic Provisions (AISC 2010). The use of shear links is recommended in an 
effort to gain the maximum elastic stiffness from the EBF system.  

For shear links the following limitations shall be satisfied as per AISC (AISC 2010): 

 Link length, e, is limited by Eq. (6.18) in order to ensure shear yielding in the link: 

 
p
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V

M
e 6.1      (6.18) 

 Where, Mp is the nominal plastic flexural strength, and Vp is the nominal shear strength 
 of an active link.  

 Maximum link rotation is limited to 0.08 rad in order to assure satisfactory behavior 
of an EBF in a severe earthquake. The link rotation can be estimated from a rigid-
plastic mechanism of the EBF as depicted in and Eq. (6.19) 

 rad
e

L
pp 08.0      (6.19) 

 Where, θp is the plastic story drift angle, rad (= Δp/H). 

 

Figure 6.14: Link rotation (AISC 2010)
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7.0 ASSESSMENT OF RC BRIDGE BENTS UTILIZING 
BUCKLING RESTRAINED BRACES FOR SEISMIC RETROFIT 

7.1 GENERAL 

Over the years, earthquakes have exposed the vulnerability of reinforced concrete structures 
under seismic loads. The recent occurrence of highly devastating subduction zone mega 
earthquakes near instrumented regions has demonstrated the catastrophic impact of such natural 
force upon reinforced concrete structures. Typical reinforced concrete bridge bents constructed 
in the 1950 to mid-1970 in the Pacific Northwest were designed and built with minimum seismic 
considerations. This resulted in inadequate detailing within plastic hinge zones, leaving 
numerous RC bridge bents highly susceptible to damage following an earthquake. In order to 
overcome this deficiency, this chapter presents experimental results of using buckling restrained 
braces (BRB) as a retrofit measure for multi-column reinforced concrete bridge bents.  

Buckling restrained braces were introduce over two decades ago in the US and many 
experimental tests and post-earthquake reconnaissance in multi-story frame buildings have 
shown that these structures may be efficiently retrofitted using BRBs. However, the increasing 
use of this system for buildings has not been reflected in bridge structures.  

The main characteristic of a BRB, as presented in the previous chapter, is its ability to have a 
stable hysteretic response through yielding in both tension and compression due to the 
prevention of global buckling (Clark et al. 1999). This inherent property of stable hysteretic 
response, which may be translated to higher hysteretic energy dissipation, makes BRBs a good 
candidate in seismic retrofit applications. Figure 6.2 illustrates the typical BRB anatomy. 

This chapter focuses in the experimental results of seismic performances of a representative half-
scale bridge bent retrofitted using buckling restrained braces in a diagonal configuration. 
Retrofitted and unretrofitted states were tested under subduction loading protocols in an effort to 
reflect the displacement demands in RC bridge bents subjected to subduction zone earthquakes. 
The braces were designed utilizing the structural fuse concept. The fuse elements, which are the 
buckling restrained braces, were designed to take the earthquake-induced energy and dissipate it 
through nonlinear hysteretic behavior; meanwhile, the remaining structure is expected to behave 
elastically or with minor inelastic excursions. 

7.2 REPRESENTATIVE RC BRIDGE BENT (PROTOTYPE) 

7.2.1 Selection 

Bridges with prestressed superstructures are the second and third more common type of bridge in 
the State of Oregon as depicted in Figure 4.1. In an effort to assess a retrofit measure for those 
bridges, the representative bridge used in this section was extracted from the multi-span 
prestressed concrete stringer/girder bridge inventory that was built before 1970. The criteria for 
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the selection of the representative bridges was inferred from the database found in the 2010 
ODOT inventory for prestressed concrete stringer/girder bridges built prior 1970 as follows: 

 Selected from 364 Prestressed Concrete Stringer/Girder bridges built prior 1970. 

 Number of spans equal to 3, since 180 out of the 364 bridges has that number of 
spans. 

 Number of lanes equal to 2, since 132 out of the 364 bridges has that number of lanes. 

 Representative bridge length ranges from 190 to 210 ft. 

 Representative bridge width ranges from 30 to 40 ft. 

 Average superstructure height equal to 31 ft. 

7.2.2 Details 

The representative reinforced concrete bent corresponds to an existing RC multi-column bridge 
bent constructed in the 1950 to mid-1970 in Oregon. As many of the bridge structures built at 
that time in the Pacific Northwest, the bridge substructure was designed and built with minimum 
seismic considerations. This resulted in inadequate transverse reinforcement, no confinement, no 
seismic detailing, and lap-splices in the plastic hinge zone of the bent. The representative bridge 
bent consists of two circular columns per bent, a rectangular cap beam and rectangular pile cap 
footings. The column longitudinal reinforcement ratio is ρL = 1.2%, which is barely above the 
minimum required by AASHTO (ρL > 1%). Conversely, the column deficiencies are vast. The 
provided column shear reinforcement (ρs = 0.2%) does not meet the code requirement (ρs > 
0.5%). The column confinement is almost inexistent since #4 circular hoops spaced at 12” were 
provided. Moreover, lap splices can be found in expected plastic hinge zones and no seismic 
detailing was specified. The specified material properties were 3300 psi as compressive strength 
of concrete at 28 days and Grade 40 steel. Typical details for the representative multi-column RC 
bridge bent following the criteria outlined in the previous section is illustrated in Figure 7.1. 

7.2.3 Assessment of the Representative Bridge 

According the FHWA retrofit design manual (FHWA 2006) in order to identify evaluation 
methods and retrofitting measures the performance-based seismic retrofit categories (SRC) need 
to be determined. This retrofit categories depend on the bridge importance, the anticipated life, 
which is one of the factors in deciding the extent of retrofitting, and the seismic hazard. For the 
representative bridge and most of the deficient bridges in Oregon a standard importance category 
is recommended. The anticipated service life (ASL) lies in the range from 16 to 50 years, which 
represents an ASL 2. Next, the performance level for the bridge needs to be determined. The 
Oregon Bridge Design and Drafting Manual (BDDM) in its 2014 version recommends a dual 
performance level. The two-level performance criteria for existing bridges recommended by 
ODOT are “Life Safety” under a 1000-year return period earthquake (7% probability of 
exceedance in 75 years) and “Operational” under a 500-year return period event (14 percent 
probability of exceedance in 75 years). The inclusion of this additional lower level performance 



 

93 

criteria (“Operational”) is above the standard performance requirements prescribed by 
AASHTO. Moreover, ODOT raised the lower earthquake ground motion level from a 100-year 
return period event (50 percent of probability of exceedance in 75 years) found in the FHWA 
retrofit manual to a 500-year event. 

  

Figure 7.1: Representative RC bridge bent 

The seismic hazard level used in this study does not correspond to any specific location, instead 
the response spectrums used in the study aim to be representative of a vast number of prestressed 
concrete stringer/girder bridges in Oregon. The design response spectrums were developed using 
the two-point method and are depicted in Figure 7.2 

 

Figure 7.2: Representative response spectrums 
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Once the spectral accelerations are obtained the seismic retrofit category (SRC) can be 
determined. For the representative bridge the SRC is as follows: 

 SRC B for the 500-year event  

 SRC C for the 1000-year event 

The methods of evaluation for the two SRC vary from a minimum analysis of component 
capacity/demand method to more refined analysis such nonlinear procedures (Pushover method 
and nonlinear time history analysis). In the assessment of the representative bridge bent two 
methods are used, namely, the displacement demand/capacity method and the pushover method. 

In the displacement demand versus capacity method the guidelines described in AASHTO 
(AASHTO 2009) were used. The displacement capacity was obtained the approximation given by 
Eq. (7.1) for the seismic design category (SDC) C since the bridge under the 500-year event can 
be categorized in this SDC. 

   oo
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Where, Ho is the column clear height, Bo is the column diameter and Λ is a factor that accounts 
for the column end restraint condition, 1 for fixed-free and 2 for fixed top and bottom. 

However, this equation was developed to represent the displacement capacity of well detailed 
columns designed in accordance with the AASHTO design specification. In order to overcome 
this problem, Imbsen (Imbsen 2006) recommended the use of Equations (7.2) and (7.3) for lap-
splice and poor confinement columns, respectively. The results of this equations are shown in 
Table 7.1. From that table can be observed that the capacity in the transverse direction is very 
limited and need special consideration in the retrofit program. 

 xL
C )0013.0(0.4       (7.2) 

 xL
C )0070.0(9.3       (7.3) 

Table 7.1: Displacement capacity of the representative bridge bent 

Direction SDC C Lap-Splice 
Poor 

Confinement 
Transverse 3.09 0.96 1.64 

Longitudinal 6.65 3.03 3.87 
 

Displacement demands for the displacement demand versus capacity method were based on 
equivalent elastic analysis. Further, the displacements were magnified through the use of the 
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displacement magnification factor for short period structures, Rd as shown in Eq. (6.1). 
Comparison between displacement demands (Table 7.2) and capacities lead to the conclusion 
that the bridge is deficient in the transverse direction.  

Table 7.2: Displacement demand in representative bridge bent 
Return Period Transverse Demand (in) Longitudinal Demand (in) 

500 years 2.2 1.1 
1000 years 2.9 1.7 

 

In order to find the capacity and demand from more refined analysis. A nonlinear static 
procedure referred to as pushover analysis was performed using the expected material properties. 
Expected material properties can be determined by applying factors to the specified properties. 
Factors of 1.3 and 1.1 are recommended in the literature for the compressive strength of concrete 
and the yield stress of steel, respectively. Therefore, a compressive strength of 4290 psi and a 
yield stress of 44 ksi were used to model the concrete and steel, respectively. The pushover 
analysis was carried out using SAP2000. The column and beam inelastic behavior was modeled 
by using the Caltrans idealized moment-curvature analysis. The results of the pushover analysis 
demonstrated that the performance of the representative bridge is below the performance criteria 
stablished by ODOT as shown in Table 7.3.  

Table 7.3: Performance of representative bridge 
Return Period Performance point (in) Performance level Performance required 

500 years 1.7 Life Safety Operational 
1000 years 2.3 Collapse Life Safety 

 
7.2.4 BRB Design 

In order to retrofit the deficient representative bridge through the inclusion of buckling restrained 
braces, the following considerations were made:  

 The BRB length and angle are limited by the dimensions of the representative bridge 
bent, which has a span length, L = 240 in and height, H = 243 in. A brace angle (θ) of 
47.5 degrees was considered appropriate for this application.  

 An inertial mass of 1.813 kip-s2/in was obtained from the superstructure dead load.  

 A response spectrum with maximum spectrum acceleration (Sa) of 0.65g with Ts 
equal to 0.49 sec for the 500-year event and 0.85g with Ts equal to 0.53 sec for the 
1000-year event were considered as depicted in Figure 7.2. Such spectrum 
accelerations were assumed in an effort to represent acceleration demands of a vast 
number of bridges in the State of Oregon.  

 An expected compressive strength of concrete equal to 4.3 ksi and an expected yield 
stress of 44 ksi for the steel reinforcement were considered. For the brace, a yield 
stress of 42 ± 4 ksi was considered appropriate for this application.  
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 The obtained as-built bent parameters from the pushover analysis were: δy
B = 0.98 

inches and ki
B = 252 kip/in.  

Following the procedure described in Chapter 6, the minimum required stiffness for the BRB 
was approximately computed as 1200 kip/in. Thus, one possible BRB design would require a 
steel core area of 3.8 in2 and a reduced section length (Lc) of 60 in. The total system demands 
were then calculated as: δR

500 = 0.83 inches and δR1000 = 1.08 inches. Other BRB designs are also 
acceptable if the strength of the concrete elements is sufficient. In this case, the steel core area 
was reduced in order to satisfy capacity checks, which resulted in minor inelastic excursions for 
the 1000-year event as illustrated in Figure 7.3. The target performance levels were achieved, 
resulting in an “Operational” performance level for the bridge following the design level 500 
year as well as 1000 year earthquake. 

 

Figure 7.3: Representative bridge behavior 

7.3 EXPERIMENTAL PROGRAM 

7.3.1 General Description 

In this study, the cyclic performance of a reinforced concrete bridge bent retrofitted using 
buckling restrained braces (BRBs) was experimentally evaluated using quasi-static cyclic 
loading that tries to replicate the displacement demands imposed by subduction zone mega 
earthquakes. The large-scale reinforced concrete bent specimen measured 122.5 inches by 118 
inches and consisted of two circular cross section columns and a rectangular cap beam. The 
columns were subjected to constant axial load. The buckling restrained braces were designed as a 
replaceable element following the structural fuse concept. The brace was secured to the frame 
using steel brackets (gusset plates) and post-installed adhesive anchors. 
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7.3.2 Test Program 

The experimental program consisted of three test intended to represent half-scale models of a 
typical RC bridge bent. Two BRB designs were considered in the study in an effort to assess the 
influence of BRB stiffness on the overall structural performance. In the third test the bent was 
tested in the as-built condition. The performance of these specimens was intended to reveal 
vulnerabilities in existing deficient RC bents and assess the behavior of its retrofitted condition 
by using Buckling Restrained Braces. 

7.3.2.1 Test Specimens 

As-Built RC Bridge Bent 

In order to represent a typical RC bridge bent in the State of Oregon, a half-scale 
reinforced concrete bent of the representative bridge illustrated in Figure 7.1 was 
designed. Similitude laws were used in order to design the half scale RC bent hereinafter 
referred to as “As-built Bent”. Table 7.4 illustrates the scaling process and includes 
relevant dimensions and reinforcement details for the test specimen. 

The half-scale RC bent consists of two circular columns per bent and a rectangular cap 
beam. The column longitudinal reinforcement ratio, ρL = 1.2%, and the transverse 
reinforcement ratio, ρs = 0.2%, are the same to the reinforcement ratios found in the 
representative bridge bent, hereinafter referred to as “Prototype”. Moreover, lap splices of 
40 times the diameter of the longitudinal bar (db) were used at the base of the columns to 
be representative of the prototype condition. 

The longitudinal reinforcement in each specimen consisted of 10 #5 bars equally spaced. 
The transverse reinforcement was deformed wire D5 spaced at 6 inches center to center. 
Lap splices were located at the base of the test specimens through the incorporation of 10 
#5 dowels. The lap splice length was 25 inches, which corresponds to 40 times the 
diameter of the longitudinal steel reinforcement (40db). The longitudinal reinforcing steel 
used to construct the test specimens consisted of Grade 40 deformed bar conforming to 
the American Society of Testing and Materials (ASTM) designation A615. On the 
contrary, the transverse steel consisted of deformed wire conforming the ASTM 
designation A496.  

Normal weight concrete was used to construct the test specimens with a target 28-day 
strength of 3300 psi. The concrete cover was 1 inch for columns and ¾ for the cap beam. 
Standard compression testing of 6-inch by 12-inch concrete cylinders was performed at 
7-day, 28 days and at the day of test completion. The average of the concrete cylinder 
tests are shown in Table 7.5 and Table 4.3. A sketch of the As-built bent reinforcement 
detailing and cross section is shown in Figure 7.4. 
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Figure 7.4: Geometry and reinforcement of RC Bridge bent specimens 

  



 

99 

Table 7.4: Dimension of representative bridge and test specimen. 

Parameter Prototype Specimen 
Scale 

Factor 
Column Diameter (in) 36 18 0.5 
Column Height (in) 224 112 0.5 
Beam Depth (in) 42 21 0.5 
Beam Width (in) 36 18 0.5 
Beam Length (in) 240 120 0.5 
ρLong (%) 1.2 1.2 1 
Hoop Spacing (in) 12 6 0.5 
ρTrans (%) 0.2 0.2 1 
Lap splice (db) 
db: diameter of longitudinal 
reinf. 

40 40 1 

Concrete cover columns (in) 2 1 0.5 
Concrete cover cap beam (in) 1.5 0.75 0.5 
Axial Load (% Agf’c) 10 10 1 
Yield stress, fy (ksi) 40 40 1 
Compressive strength , f’c (psi) 3300 3300 1 

 

Table 7.5: Compressive strength of concrete cylinders for deficient RC bent 

Concrete Pour  
Compressive Strength (f’c), psi 

Columns Beam 
7 day 3961 3774 

28 day 4326 4168 
Model 1 
(test day) 

4833 4739 

Model 2 
(test day) 

4971 4776 

As-built 
(test day) 

4975 4780 

 
Design of Buckling Restrained Braces 

The design of BRBs followed the procedure described in Chapter 6.0, which uses a 
structural fuse concept as basis for design. The structural fuse concept states that the As-
built bent would respond elastically under a damaging earthquake event, i.e. the BRB 
needs to be designed in such way to reduce the displacement demands on the As-built 
bent under 500-year and 1000-year earthquake events. This reduction in displacement 
demand is called retrofit action as illustrated in Figure 6.9. In this figure, the BRB and the 
As-built RC bent responses are idealized through load-displacement curves. Relevant 
load-displacement parameters are the yield displacement (δy) and yield force (Vy) 
denoted by the superscripts BRB, B and R to designate the brace, As-built and retrofitted 
responses, respectively. The response of the retrofitted bent is no other than adding the 
contributions of the As-built bent and the BRB since both structural systems act in 
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parallel. The design of BRBs is reduced to iterate until the BRB stiffness, the BRB steel 
core area and the length of the reduced section (Lc) are determined. 

Two BRB designs were considered in the study in an effort to assess the influence of 
BRB stiffness on the overall structural performance. The first BRB design, hereinafter 
referred to Model 1, was designed following the structural fuse concept. The second 
model, hereinafter referred to Model 2, was designed as a more flexible brace, as 
compared to Model 1, in order to reflect a common industry practice where the reduced 
section is equivalent to two thirds of the total BRB length. For the braces, a yield stress of 
44.2 ksi given by the BRB manufacturer, a brace angle (θ) of 48.7 degrees and a BRB 
length of 130.625 inches were considered appropriate for this application. The obtained 
parameters for the As-built bent from pushover analysis were δy

B = 0.48 inches and Vi
B = 

52 kip. A response spectrum with maximum spectrum acceleration (Sa) of 0.65g with a 
period at the end of constant design spectral acceleration plateau (Ts) equal to 0.49 sec for 
the 500-year event and 0.85g with Ts equal to 0.53 sec for the 1000-year event were 
considered.. The required BRB steel core areas and reduced section lengths (Lc) for both 
models are shown in Table 7.6. Table 7.6 also shows the displacement demands in the 
retrofitted bent. The response of each resisting system and the retrofitted bent are 
depicted in Figure 7.5 and Figure 7.6 for Model 1 and Model 2, respectively. 

The target performance levels required by ODOT (ODOT 2014) were achieved, resulting 
in an “Operational” performance level for the Model 1 following the design level 500 
year as well as 1000 year earthquake. Further, for Model 2 the Operational performance 
criteria under the 500-year event and the Life Safety criteria under the 1000 year event 
were still satisfied. 

Table 7.6: Results of BRB designs for Model 1 and 2. 

Model 
Steel area 

(in2) 
Reduced Section 

(in) 
Displacement demand (in) 
δR

500 δR
1000 

1 1.2 30 0.48 0.67 
2 1.2 88.6 0.76 1.06 

 

 

Figure 7.5: Expected load vs displacement behavior for Model 1 
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Figure 7.6: Expected load vs displacement behavior for Model 2 

Connections 

A novel gusset plate to RC bent connection was utilized in the experimental program. In 
this connection, the gusset plates were directly connected to horizontal RC elements 
without interfering with the columns. The authors believe that these were the first tests of 
this kind on a steel-concrete retrofit connection without the use of an additional steel 
frame. Figure 7.7 shows the connection used in the experimental program.  

Any BRB to gusset plate connection shall be designed to resist the demands based on the 
adjusted brace strength as per AISC (2010) as shown in Eq. (6.16). 

The limit states that were checked for the design of the gusset plate according to 
AASHTO (2009) and AISC steel manual (2011) are: tensile yielding of Whitmore 
section, tensile rupture of Whitmore section, block shear in tension, buckling in 
compression, yield moment strength, plastic moment strength, weld/bolts for gusset to 
brace connection, and buckling of unsupported edge.  

Post-installed adhesive anchors were designed for connecting the gusset plate to concrete 
elements. The design forces were obtained from the adjusted brace strength and the 
correspondent gusset plate free body diagram. Tensile and shear strength were considered 
in the connection design according ACI318 Appendix D (ACI318 2011). 

The design procedure for the connections is detailed in the appendices. 
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                (a)         (b) 

Figure 7.7: No Gusset Plate to Column Connection (a) Lower connection, (b) Top connection 

7.3.2.2 Test Setup and Instrumentation 

The experimental setup consists of a half scale model of a typical RC bride bent 
retrofitted using buckling restrained braces in a diagonal configuration, namely Model 1 
and Model 2. The braces in both models have the same material properties and cross-
sectional area of steel core within the reduced section. However, they differ in length of 
the reduced section (Lc).  

The cyclic lateral loading was applied through a horizontal hydraulic actuator capable of 
applying a maximum load of 220 kip in tension and 300 kip in compression. The actuator 
was connected to a steel beam on the cap beam. The lateral force was applied under 
displacement control and load cells were used to monitor the applied load during testing. 
To simulate the gravity load on bridge columns, 10% of the column axial capacity 
(0.10f’cAg) was applied through two high-strength rods and hydraulic rams attached to a 
horizontal steel beam located on top of each column. A six degree of freedom (6DOF) 
load cell was connected at midspan of the cap beam in order to measure the internal 
forces that were transmitted from one side of the bent to the other. The footing was 
secured to the laboratory floor with post-tensioning rods. A schematic representation of 
the experimental test setup is shown in Figure 7.8, meanwhile the actual test setup is 
illustrated in Figure 7.9 

Failure was defined as a 20% drop in peak lateral load for each specimen except for 
Model 1, which was tested up to the expected displacement demand under the 1000-year 
event (δR

1000). The yield displacement (δy) was theoretically determined from material 
properties for Models 1 and 2 and from the pushover analysis for the As-built RC bent. 
Values of actual yield displacement were then corrected during each test.  
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Figure 7.8: Schematic of test setup configuration 

 

Figure 7.9: Actual test setup 

In order to analyze the response of the specimens subjected to cyclic lateral loading, the 
columns were fully instrumented via strain gages and linear variable displacement 
transducers (LVDTs) as shown in Figure 7.10 and Figure 7.12, respectively. Strain gages 
were used to measure the strain at specific points in the specimens. A total of 90 strain 
gages were mounted. 8 strain gages in the dowels embedded in the footings, 24 in the 
column dowels, 48 in the longitudinal reinforcement of the columns, 4 in the transverse 
reinforcement of the columns, 4 in the cap beam, and 2 in the gusset plates. All strain 
gages were placed at expected plastic hinge zones of columns and cap beam. Installation 
of all strain gages was performed prior to the placement of the concrete as shown in 
Figure 7.11. LVDTs were used to measure relative displacements and rotations. For 
example, rotation of columns, elongation of BRB, relative displacement between 
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columns and cap beam, and between columns and footings, etc. A schematic with some 
of the LVDTs used in this experimental program is depicted in Figure 7.12.  

 

Figure 7.10: Location of strain gages 

   

      (a)      (b) 

Figure 7.11: Installation of strain gages. (a) Strain gages on longitudinal reinforcement and 
dowel, (b) Strain gages with protective coating. 
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(a) 

 

(b) 

Figure 7.12: Location of LVDTs. (a) RC Bent, (b) BRB. 

7.3.2.3 Cyclic Loading Protocols 

Loading of the test specimens was slowly applied using quasi-static cyclic loading 
protocols aiming to reflect subduction zone earthquake demands up to displacement 
ductility 8. For the retrofitted system a new loading protocol was specifically developed 
for structures of fundamental period of 0.2 sec. by using the demand parameters shown in 
Figure 3.4 and Figure 3.5. This period was found to be more representative of the 
retrofitted condition because the inclusion of the BRB increases the total system stiffness, 
which in turns decreases the fundamental period of the structure. For the As-built RC 
bent the same loading protocol used in the experimental program described in Chapter 4 
was utilized. Both protocols are shown in Figure 7.13. 
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The horizontal loads were applied under displacement control based on a pattern of 
progressively increasing displacements, referenced to the horizontal displacement to 
cause first yield (δy) in the brace for the Bent/BRB structural system (Model 1 & 2) and 
in the columns for the as-built RC bent. The protocols subjected the Bent/BRB system 
and the as-built bent to cumulative inelastic deformations equal to 351 and 257 times the 
yield deformation δy, respectively. These values of cumulative inelastic deformations are 
greater than that required in cyclic test for qualification of BRBs, which requires a 
cumulative inelastic deformation of at least 200Δy (AISC 2010). 

        

           (a)          (b) 

Figure 7.13: Cyclic loading protocol. (a) Retrofitted bent, (b) As-built RC bent. 
 
7.3.3 Test Results 

7.3.3.1 Model 1 

The buckling restrained brace used in Model 1 was designed using the structural fuse 
concept described in Chapter 6, which resulted in a considerable stiff BRB as shown in 
Figure 7.14. 

The lateral load vs. displacement hysteresis curve (shown in Figure 7.15) for this 
specimen indicates high ductile behavior and energy dissipation. Model 1 exhibited a 
ductile behavior up to a displacement ductility value of 8, which was the maximum 
ductility considered in this case. The theoretical yield displacement of the brace was 
computed as 0.07 inches. However, this yield displacement was corrected during the test 
in an effort to accommodate the actual response of the test specimen. The experimental 
yield displacement was 0.083 inches, which is a 19% increase with respect to the 
theoretical value. The first horizontal crack of width less than 0.05mm occurred at a 
displacement of 0.25 inches and a lateral load of 79 kip approximately. The peak lateral 
load was 113 kip and occurred at a lateral displacement of approximately 0.67 inches. 
The specimen did not exhibited a significant decrease in lateral strength. At the end of the 
test, only horizontal hairline cracks of width 0.05mm were observed at the base and top 
of columns as shown in Figure 7.16. Once the BRB was removed from the RC bent, it 
was observed that the gusset plates did not present any trace of damage. The brace was 
opened in order to observe the damage presented in the steel core. Figure 7.17 shows the 
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damage undergoes by the steel core, in which is observed little damage in the intersection 
between the transition section (Ltr) and the reduced section (Lc). This damage is attributed 
to high stress concentrations from changing the cross sectional shape of the steel core. 

 

Figure 7.14: Model 1 

 

Figure 7.15: Load vs. Displacement curve of Model 1 
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(a) 

 

(b) 
 Figure 7.16: Damage in RC Bent Model 1. (a) Horizontal crack pattern, (b) Crack width 

 

Figure 7.17: Damage in BRB Model 1 

7.3.3.2 Model 2 

In an effort to assess the influence of BRB stiffness on the overall structural performance, 
the buckling restrained brace used in Model 2 was designed following a typical design for 
BRBs, which considers a reduced section equal to two thirds of the brace length. As 
result, this BRB is more flexible than that used in Model 1. Model 2 is shown in Figure 
7.18. 
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Figure 7.18: Model 2 

Figure 7.19 shows the lateral load vs. displacement hysteresis curve for this specimen. 
The curve indicates high ductile behavior and energy dissipation up to a ductility value of 
4.5, which is equivalent to a displacement of 1.3 inches. The theoretical yield 
displacement of the brace was computed as 0.2 inches and the experimental one was 0.29 
inches, which is a 45% increase with respect to the theoretical value. The horizontal 
cracks during the test formed throughout the expected plastic hinge zones of the columns 
and progressed in length and width as shown in Figure 7.20(a). The maximum horizontal 
crack width was 0.4mm. Vertical cracks (width less than 0.6mm) were registered in the 
cap beam in negative moment areas. As the progressively increasing displacements were 
applied, the lateral load increased up to -104 kip for the brace compression direction. 
From that displacement forward, the specimen exhibited a significant decrease in lateral 
strength during the compression half-cycles. Presumably, buckling of the steel core 
started developing at this point giving place to fracture of the steel core once the BRB 
was tensioned after a cycle in compression as shown in Figure 7.19. Once the BRB 
failed, all the load capacity was carried by the As-built RC bent capacity without 
considering the BRB contribution. 

The peak lateral load was 115 kip and occurred at a lateral displacement of approximately 
1.13 inches. At the end of the test, minimal spalling of concrete at the base of the 
columns was observed as illustrated in Figure 7.20(b). Once the BRB was removed from 
the RC bent, the gusset plates were inspected and did not exhibit any trace of damage. 
The brace was opened in order to observe the damage presented in the steel core. Figure 
7.21 shows the damage undergoes by the steel core, in which is observed the fracture of 
the steel core. Even though, this specimen was designed to sustain a maximum 
displacement of 2.7 inches, the fracture of the steel core occurred at a lateral 
displacement of 1.2 inches (displacement ductility of 4.5). This mode of failure was 
attributed to poor confinement in the transition section (Ltr) within the brace. 
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Figure 7.19: Load vs. Displacement curve of Model 2 

(a) (b) 
 Figure 7.20: Damage progression in Model 2. (a) Horizontal cracks, (b) Spalling of 

concrete 
  

BRB Failure

As-built Bent Capacity
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Figure 7.21: Damage in BRB Model 2 

7.3.3.3 As-Built RC Bent 

Despite all the deficiencies of the As-built RC bent, this bent exhibited a moderately 
ductile behavior. The initial damage consisted of horizontal cracks that were propagated 
throughout the height of expected plastic hinge zones to give place to spalling of concrete 
in early stages. Vertical cracks in the beam increased in width up to 0.8 mm. The ultimate 
mode of failure was crushing of concrete and buckling of steel reinforcement at the end 
of testing. Crushing of the concrete at the base and top of the columns began due to 
flexural loading, exposing the column reinforcement. Once the concrete cover was lost, 
the longitudinal bars in those regions began to buckle and finally the dowels fracture as 
shown in Figure 7.23(a) and Figure 7.23 (b), respectively. The buckling of the dowels 
was observed once the cover of the concrete at the base of the column was completely 
crushed. 

The theoretical yield displacement of the bent was computed using a pushover analysis, 
which resulted in a yield displacement equal to 0.48 inches. However, this yield 
displacement was then corrected during the test. The experimental yield displacement 
was 0.54 inches, which is a 12% increase with respect to the theoretical value. The 
experimental yield displacement was determined by using strain gage measurements at 
the base and top of the columns. Representative strain gage measurements are presented 
in the appendices. 

The lateral load vs. displacement hysteresis curve (shown in Figure 7.22) for this 
specimen indicates reasonable ductile behavior and energy dissipation. The As-built RC 
bent was able to attain a maximum displacement of 4.9 inches before the applied load 
dropped below 80% of the peak load. The peak lateral load was 70 kips and occurred at a 
lateral displacement of approximately 2.4 inches. It is worth mentioning that the initial 
stiffness of the As-built bent is lower since stiffness degradation occurred when the bent 
was previously tested in a retrofitted state. 
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Figure 7.22: Load vs. Displacement curve of As-built RC bent 

 

(a) 

 

(b) 
Figure 7.23: Damage on As-built RC bent. (a) Buckling of Steel, (b) Rupture of steel 

7.3.4 Analysis of Results 

7.3.4.1 BRB elongation 

The elongation of the BRB was measured via four LVDTs. Two of them measure the 
relative displacement between the steel core and the steel casing at the top and bottom 
connections, referred to as Top and Bottom elongations. The other two, referred to as 
“West” and “East”, were located on the sides of the brace to measure the total elongation. 
The brace elongation results for Model 1 and Model 2 are shown in Figure 7.24 and 
Figure 7.25, respectively. 

Comparing the top elongation to the bottom elongation it can be concluded that for both 
models the inelastic behavior was concentrated in the top section. This behavior is even 
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more critical for Model2, in which the top elongation was up to 20 times greater than the 
bottom elongation. As a result, the brace failed at the top part at an elongation of 0.78 
inches. The elongation at rupture was lower than our expectations since according the 
BRB design the brace should have attained a maximum elongation of 1.78 inches. The 
unsatisfactory behavior of the BRB in Model 2 was attributed to the poor confinement of 
the brace within the transition section (Ltr).  

The measurement collected from the West LVDT agree very well with the one located on 
the East side as shown in Figure 7.24(b) and Figure 7.25(b). Moreover, The total 
elongation that was directly collected from the West and East LVDTs agree well with the 
total elongation calculated adding the Top and Bottom measurements as shown in Figure 
7.24(c) and Figure 7.25(c). 

 
             (a)                  (b) 

 
             (c) 

Figure 7.24: BRB elongation in Model 1. (a) Top and Bottom, (b) West and East, (c) Mean E-W 
and Bottom+Top 
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             (a)                  (b) 

 
             (c) 

Figure 7.25: BRB elongation in Model 2. (a) Top and Bottom, (b) West and East, (c) Mean E-W 
and Bottom+Top 

7.3.4.2 Comparison to demand 

Figure shows the comparison between the experimental results and the theoretical 
displacement demands under the 500-year earthquake event and 1000-year event. The 
target performance levels required by ODOT (ODOT 2014) were achieved, resulting in a 
fully “Operational” performance level for the Model 1 following the design level 500 
year as well as 1000 year earthquake. Further, for Model 2 the Operational performance 
criteria under the 500-year event and the Life Safety criteria under the 1000 year event 
were still satisfied. 
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(a) 

 

(b) 

Figure 7.26: Comparison between experimental results and theoretical demand; (a) Model 1, (b) 
Model 2 
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7.3.4.3 Comparison to analytical results 

The load vs displacement envelopes, also referred to as backbone curves, were compared 
to nonlinear static analyses (pushover) that were carried out during the design of the 
BRBs. The pushover analyses were performed using SAP2000 (Computers and 
Structures Inc. 2011). The model used for the nonlinear static analysis is depicted in in 
Figure 7.27 . The following considerations to develop the analytical model were made: 

 The inelastic behavior of the columns was modeled assuming the Mander concrete 
parametric stress-strain curve for the unconfined and confined concrete (Mander 
1984) and the Park parametric stress-strain curve for reinforcing steel. The hinges in 
columns and beam were defined using an idealized moment-curvature behavior as 
described in Caltrans (Caltrans 2013). 

 The BRB was modeled using an axial hinge that was controlled by deformation. The 
behavior of the axial hinge was modeled as elastic-plastic with hardening as depicted 
in Figure 6.10. 

 All potential plastic hinge locations were considered and were lumped at specific 
locations shown in Figure 7.27. 

 Rigid links were utilized to represent the beam-column joint and gusset plates. 

 The comparison between experimental and analytical envelope results are shown in 
Figure 7.28, Figure 7.29 and Figure 7.30 for Model 1, Model 2 and As-built bent, 
respectively. The Model 1, that was tested up to the expected displacement demand 
under the 1000-year event (δR

1000 = 0.67 inches), showed an excellent fitting between 
the experimental and analytical load-displacement envelope curves, especially for the 
initial stiffness and yield displacement. Figure 7.29 compares the experimental result 
for the Model 2 with those from the pushover analysis using SAP2000. From this 
figure, it is clear the analytical results agree well with the experimental results until 
the unexpected failure of the BRB, which was attributed to poor confinement in the 
transition section (Ltr) within the brace. Thus, using a relatively simple nonlinear 
model the experimental results for the retrofitted condition can be described 
satisfactorily. 

 On the contrary, the As-built bent, showed more displacement capacity as compared 
to the analytical results but similar strength capacity. It is worth noting that the initial 
stiffness of the As-built bent is lower since stiffness degradation occurred when the 
bent was previously tested in a retrofitted state. 
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Figure 7.27: Model schematic for the nonlinear static analysis 

 

Figure 7.28: Experimental vs. analytical envelope curves for Model 1 

 

Figure 7.29: Experimental vs. analytical envelope curves for Model 2 
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Figure 7.30: Experimental vs. analytical envelope curves for the As-built bent 

7.3.4.4 Comparison between backbone curves 

Figure 7.31 shows a comparison between the backbone curves for the three specimens 
tested. The Model 1 and 2 showed greater strength and stiffness as compared to the As-
built bent. This behavior was expected because the inclusion of the BRB, which acts in 
parallel with the RC bent, adds stiffness to the overall system as depicted in Figure 6.9. 
The fact that Model 1 had an abrupt drop in load was attributed to the poor confinement 
of the brace.  

Despite the seismic detailing deficiencies, the backbone curve for the As-built bent 
showed moderate displacement capacity. This behavior is likely a result of a relatively 
long lap splice length (40db) and a low axial load level (0.1 f’c Ag). Even though this 
behavior was unexpected because the vast number of deficiencies of the as-built bent, 
similar results can be found in the literature (McLean et al. 1998), (Pantelides and 
Gergely 2008). 
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Figure 7.31: Backbone response comparison 

7.3.4.5 Stiffness degradation 

The stiffness degradation is an important property in RC bridges subjected to seismic 
events since it changes the effective natural period of the structure. Stiffness degradation 
can be attributed to brace nonlinear behavior, concrete nonlinear behavior caused by 
flexural and shear cracking, slippage of steel reinforcement, etc.  

In this study, the normalized stiffness, represented as the secant stiffness divided by the 
yield stiffness, at different displacement ductilities, was utilized as the stiffness 
degradation parameter. It is worth noting that for Models 1 and 2 the yield displacement 
used in the calculations corresponds to the yield displacement of the BRB. On the other 
hand, the normalized stiffness degradation for the As-built bent was not calculated since 
its yield stiffness was already deteriorated. This stiffness deterioration occurred when the 
bent was previously tested in a retrofitted state. 

In terms of stiffness degradation both test specimens showed similar stiffness degradation 
up to a displacement ductility 2. However, for ductilities above 2, the Model 1 showed a 
lower stiffness degradation than Model 2. This is concordant with the hysteretic response 
showed by the two specimens, in which Model 1 showed a stable response throughout the 
test. On the other hand, the stiffness degradation in the negative direction for Model 2 
showed a decay at a displacement ductility of 3.2, which is consistent with the strength 
degradation shown in Figure 7.19. Moreover, Model 2 showed an abrupt decay at a 
displacement ductility of 4.2 due to rupture of the BRB steel core.  

Gulkan and Sozen (Gulkan and Sozen 1974) proposed a relation between the 
displacement ductility (µ) and the secant stiffness (ksec) as shown in Eq. (4.1). That 
relation does not agree well with the stiffness degradation for Models 1 and 2 since it was 
developed to be representative of deficient columns. Further, this result implies that the 
retrofitted bent has lower rate of stiffness degradation than deficient RC components. 
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Figure 7.32: Stiffness degradation Model 1 &2 

7.3.4.6 Energy Dissipation and Equivalent Viscous Damping 

The property of dissipating energy through hysteretic behavior is desirable in structures 
subjected to major seismic events. In this study the amount of energy that was dissipated 
by the specimens was calculated as the area (Ad) enclosed by a full cycle as shown in 
Figure 7.33.  

 

Figure 7.33: Illustration of energy dissipated through hysteretic behavior. 

A central task in any modern seismic analysis method is to determine the equivalent 
viscous damping of a structure. This is especially important in bridges that are designed 
and retrofitted using displacement based analysis. Thus, an important parameter in any 
experimental program is to determine the equivalent viscous damping of the structure.  

The total equivalent viscous damping equation is divided in two expressions: 

 hysteleq         (7.4) 
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Where, ξel denotes the initial elastic damping, which is typically considered as 5% for RC 
structures, and ξhys denotes the hysteretic damping.  

The hysteretic damping can be calculated by using Eq. (7.5). (Priestley et al. 2006) 
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     (7.5) 

Where, Ad is the energy dissipated in a full cycle as shown in Figure 7.33 and Astrain is 
the strain energy (or stored energy) measure at the peak force of each cycle. 

The equivalent viscous damping (ξeq) was calculated for each specimen and is illustrated 
in Figure 7.34. The displacement ductility (µ) used in this section for Models 1 and 2 was 
computed in terms of the yield displacement of the bent (δy

B) instead of the yield 
displacement of the BRB (δy

BRB) in an effort to allow comparisons between the 
equivalent viscous damping results of each test specimen.  

The results showed that Model 1 has the greatest equivalent viscous damping (ξeq ≈ 27%) 
as compared to Model 2 and the As-built specimens. This result is consistent with the 
stable hysteretic behavior and wide loops shown by Model 1. As shown in Figure 7.34, 
the equivalent viscous damping (ξeq) increased with increasing levels of displacement 
ductility. However, once the specimen failed it can be seen two trends. For the As-built 
specimen the ξeq remained constant with increasing ductility, on the contrary, in Model 2 
the equivalent viscous damping decreased with increasing ductility following a similar 
trend to the strength degradation shown in Figure 7.19 for the load-displacement 
response. It is worth noting the fact that all the specimens had ξeq values of approximately 
25%. 

 

Figure 7.34: Equivalent viscous damping. 
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7.4 SUMMARY 

A case study of a representative reinforced concrete bridge bent constructed in the 1950 to mid-
1970 in the Pacific Northwest was presented in an effort to assess its deficiencies and 
demonstrate the retrofit procedure of adding BRBs for the transverse direction. Retrofitted and 
unretrofitted cases were tested using cyclic loading protocols representative of the displacement 
demands in RC bridge bents subjected to subduction zone earthquakes. The retrofitted RC bridge 
bent was designed to perform elastically or with minor inelastic excursions within the original 
bent throughout the different seismic hazard design levels. Two BRB designs were considered in 
this study in an effort to assess the influence of BRB stiffness on the overall structural 
performance. A novel gusset plate to RC bent connection was used, in which the gusset plates 
were directly connected to the horizontal RC elements without interfering with the columns. 

Observations based on numerical and experimental results can be summarized as follows: 

 The numerical results showed that by implementing buckling restrained braces, the 
retrofitted bent was significantly stiffer than conventionally retrofitted and yet 
provided for ductile response without significant damage to the concrete elements and 
could be a suitable retrofit measure for successfully achieving performance based 
dual-level design approaches. Even though, the proposed design implementation was 
developed for a diagonal configuration in mind, its application can be extended to 
other cases. 

 The results of these large-scale experiments successfully demonstrated the 
effectiveness of utilizing buckling restrained braces for achieving high displacement 
ductility of the retrofitted structure, while also controlling the damage of the existing 
vulnerable reinforced concrete bent up to the design performance levels. No damage 
was observed in the connection regions of the brace throughout the loading history, 
leaving the potential for replaceability of the sacrificial BRB element. The potential 
for improving the overall seismic behavior and the design performance levels with 
BRBs offers bridge design professionals a viable method for performance driven 
retrofit of multi-column reinforced concrete bridge bents. 

 The results also indicated that despite the detailing deficiencies of the multi-column 
RC bridge bents built before 1970 in the Pacific Northwest, the cyclic response of the 
unretrofitted bent exhibited moderately ductile performance. The moderately ductile 
performance is likely a result of a relatively long lap splice length (40db), and low 
axial column loads (0.1 f’c Ag).
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8.0 FRAGILITY CURVES 

8.1 GENERAL 

The economic impact that a severe earthquake has on a highway network has led governmental 
entities and research groups to develop reliable methods for the damage assessment of 
components and highway structures in general. One of these methodologies is to base the 
damage assessment in fragility curves. Bridge damage fragility curves describe the conditional 
probability of exceeding a level of direct or indirect bridge damage for a given level of seismic 
hazard. Nowadays, fragility curves have emerged as an important decision tool to prioritize 
bridge retrofitting and estimate potential losses during and after a major earthquake. 

In this chapter a brief state of the art in bridge fragility curve development is presented, 
limitations of each fragility development method are discussed, and fragility curves for a 
representative bridge bent in its as built and retrofitted conditions are developed by using 
analytical methods. In order to develop those fragility curves actual subduction zone strong 
motion records in conjunction with nonlinear static analysis performed in SAP2000 were used. 

8.2 SEISMIC FRAGILITY 

Seismic fragility analysis was born as a consequence of lifeline earthquake engineering. Current 
highway structure design methodologies are trending to performance-based design, in which 
fragility curves play an important role of describing the performance of a structure or component 
at different levels of a selected seismic intensity measure (Mackie and Stojadinovic 2005). 

The fragility of a structure or component can be expressed as a conditional probability that a 
defined limit state (LS) is exceeded for a given level of ground motion intensity (IM), as follows:  

  IMLSPFragility      (8.1) 

8.3 FRAGILITY DEVELOPMENT METHODS 

The development of fragility cures has been widely discussed in the literature (Shinozuka et al. 
2000), (Stojadinović and Mackie 2007), (Vosooghi and Saiid Saiidi 2012) and several methods 
have been applied for its development. Fragility development methods can be categorized in 
empirical methods, experimental methods, expert opinions, and analytical methods. A detailed 
literature review of fragility curves development methods can be found in Mehary and Dusicka 
(Mehary and Dusicka 2015), and in Muntasir Billah and Alam (Muntasir Billah and Alam 2014). 

8.3.1 Empirical Methods 

Empirical fragility curves are developed by utilizing observed damage data during past 
earthquakes. These damage data was collected primarily during the 1971 San Fernando 
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earthquake, 1989 Loma Prieta earthquake, and the 1994 Northridge earthquake, which showed 
the high vulnerability of deficient bridges subjected to strong ground motions.  

Empirical fragility curve development is relatively straightforward since earthquake damage 
reports are used to establish the relationship between the ground motion intensity and the damage 
state of each bridge. 

Several reasearchers have conducted studies to develop bridge fragility curves by statistically 
analyzing empirical damage data from damage reports (Basoz and Kiremidjian 1998), (Yamazaki 
et al. 1999), (Shinozuka et al. 2000). 

Despite empirical methods may represent a more realistic approach due to the use of actual 
damage reports, they lack generality and have a large degree of uncertainty, which is primarily 
due to potential discrepancies in damage observation between inspection teams. 

8.3.2 Expert Opinion 

In this method the opinion of experts is collected and analyzed to estimate structural damages. 
The expert opinion is usually considered through surveys, which are then analyzed and 
represented in a damage probability matrix describing damage state for different levels of ground 
motion intensity. Finally, the probability matrix generated from the survey results is used for 
developing the fragility curves (ATC 1991), (Grossi 2000). 

The expert opinion is the only source for the development of fragility curves. As a result, this 
method depends on the experience of the engineer and the number of expert’s opinion gathered, 
which can lead to largely bias fragility curves and question its reliability. 

8.3.3 Experimental Methodology 

In this method the results from large-scale or full-scale experiments are needed for the 
development of fragility curves. Vosooghi and Saiidi (Vosooghi and Saiidi 2012) developed 
experimental fragility curves for reinforced concrete bridge columns based on data from 32 
bridge column models tested on shake tables. However, a lack of data at the same damage state 
is evident due to the limited amount of large scale testing. This lack of data highly limits the 
application of the experimental fragility curves.  

8.3.4 Analytical Methods 

8.3.4.1 Elastic spectral analysis 

In this method the capacity/demand ratio of different components are determined to 
evaluate their potential seismic damage. In order to develop fragility curves using this 
method, damage states are defined and correlated to the capacity/demand ratio of the 
component via statistical analysis. The capacity/demand ratios are obtained using elastic 
spectral analysis (Hwang et al. 1999) (Hwang et al. 2000) (Hwang et al. 2001). 
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Despite the easy implementation of this method, its limitation is apparent at not be able to 
account for nonlinear behavior. 

8.3.4.2 Non-linear static analysis (NSA) 

Nonlinear static analysis (NSA), also called Pushover analysis, is used in conjuntion with 
probabilistic analysis to determine fragility curves.  (Mander and Basöz 1999), 
(Shinozuka et al. 2000), (Liao and Loh 2004).  

In this method uncertainty in capacity and demand is considered by plotting log-normal 
distributions over the capacity and demand curves. For a particular intensity measure 
level the probability of failure can be estimated by using the intersection of capacity and 
demand distribution as shown in Figure 8.1. Finally, the fragility curves can be generated 
by increasing the level of intensity measure (IM) and measuring the response at various 
damage states (DS).  

Shinozuka et al. (Shinozuka et al. 2000) examined fragility curves of a bridge by time 
history analysis and the capacity spectrum method which is one of the nonlinear static 
procedures developed for buildings. Their comparison of fragility curves generated by the 
nonlinear static procedure with those by time-history analysis indicated that there was 
good agreement for the state of minor damage, but not as good for the state of major 
damage where nonlinear effects played an important role. However, they also concluded 
that even for the state of major state the agreement between the fragility curves based on 
NSA and nonlinear time history analysis was adequate considering the large number of 
assumptions that are performed for obtaining the fragility curves.  

 

Figure 8.1: Capacity vs demand spectra showing uncertainty in structural behavior and ground 
motion response (FHWA 2006). 

This method overcomes the deficiencies of performing an elastic spectral analysis by 
considering nonlinearities. However, in this method not all nonlinear effects are 
considered, which limits its application. 
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8.3.4.3 Non-linear time history analysis 

Nonlinear time histories are used to construct analytical fragility curves.. In this method 
ground motion time histories are selected to represent the seismic hazard at a specific 
area of interest. Nonlinear time histories analysis are conducted to obtain the response of 
the structure in study. Damage states and intensity measures are defined to quantify the 
damage undergo for the structure. Probabilistic analysis of the median and log-standard 
deviation parameters are then estimated by maximum likelihood procedure and the 
fragility curves are generated. (Shinozuka et al. 2000), (Hwang et al. 2001), (Shinozuka et 
al. 2001), (DesRoches et al. 2003), (Pan 2007), (Nielson and DesRoches 2007), (Simon et 
al. 2010). 

Despite of being the most computationally demanding and time consuming, this method 
is the most reliable one for generating fragility curves. 

8.3.5 Fragility Curves for Retrofitted Bridges 

Currently, limited bridge fragility has been developed for retrofitted bridges. Some of this 
researches are summarized below. 

Shinozuka et al. (Shinozuka  et al. 2002) developed fragility curves for two retrofitted bridges by 
means of steel jacketing of columns. In order to develop the fragility curves, they used SAP2000 
for modeling the bridges and sixty ground motion recordings representative of Los Angeles. 

Padgett (Padgett 2005) reviewed bridge seismic retrofit practice in the Central and Southeastern 
United States. Padgett used 48 strong ground motions as a seismic hazard and the Open System 
for Earthquake Engineering Simulation (OpenSees) computational analysis program to model the 
bridges. Non-linear time history analysis were conducted to capture parameters of interest for 
each component. The fragility was modeled by a lognormal cumulative distribution function 
where the structural demand and capacity were assumed to be lognormal distributed. 

Padgett and DesRoches (Padgett and DesRoches 2007, 2008, 2009 presented an analytical 
methodology for developing fragility curves for retrofitted bridge systems for the Central and 
Southeastern U.S. Since there were no records of strong motions in that area, they used two 
suites of synthetic ground motions for the study.  

Muntasir Billah et al. (Muntasir Billah et al. 2012) developed fragility curves for retrofitted 
multicolumn bridge bents subjected to near-fault and far field ground motions using a 
probabilistic seismic demand model and incremental dynamic analyses (IDA). The retrofit 
measures considered in that study were concrete jacketing, steel jacketing, carbon fiber 
reinforced polymer (CFRP) jacketing, and cementitious composite jacket. The results, as 
anticipated, showed that the bent retrofitted with concrete jacketing was more vulnerable to 
seismic ground motions. On the contrary, the bent retrofitted with CFRP and cementitious 
composite showed less vulnerability under both far-field and near-fault earthquakes. 
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8.4 FRACILITY CURVES FOR REPRESENTATIVE BRIDGE BENT 

In the current study, the nonlinear static analytical method is used to evaluate the seismic 
fragility of the representative bridge bent built prior 1970 in the State of Oregon, as described in 
Section 7.2, and its retrofitted state with buckling restrained braces. A two-dimensional (2D) 
finite-element model scheme modeled in SAP2000 (shown in Figure 7.25) was used in the 
analytical modeling because of the good agreement between experimental and analytical results 
as depicted in Figure 7.26, and Figure 7.28 for the retrofitted and as-built condition, respectively. 
Moreover, for simplicity, the bridge bent is assumed to be supported by rigid foundations. 

The methodology for fragility curve development used in this study follows the one proposed by 
Shinozuka et al. (Shinozuka et al. 2000), which is based on Capacity Spectrum method as a 
nonlinear static procedure.  

8.4.1 Strong Ground Motions 

A total of 30 earthquake ground motions, of which 10 are from the Tohoku earthquake M 9.0, 10 
from the Maule, Chile earthquake M 8.8, and 10 from the Valparaiso, Chile earthquake M 7.8 
were utilized to evaluate the likelihood of exceeding the seismic capacity of the bridge bent in an 
effort to represent a potential Cascadia earthquake scenario. The seismic actions were 
represented by means of 5% damped elastic response spectra as shown in Figure 8.2. 

8.4.2 Damage States 

Damage states (DS) for a bridge component should provide a useful qualitative and quantitative 
representation for that component. These DS are often based on visual representations or strain 
and stress levels obtained from experimental studies. In this work, the engineering demand 
parameter (EDP) used for measuring the damage state of the bridge bent was displacement 
ductility, µ. The EDP values are based on available literature (Hwang et al. 2001) and are shown 
in Table 8.1. The displacement ductility for the damage state of collapse was adapted to the 
maximum ductility of the representative bridge bent. 

 

  

Figure 8.2: Response spectra for the 30 time histories (5%damping) 
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Table 8.1: Damage states for fragility curve development 

EDP 
Damage States 

Slight Moderate Extensive Collapse 
Displacement ductility µ > 1 µ > 1.2 µ > 1.76 µ > 3.5 

 

8.4.3 Fragility Curves 

Nonlinear static analyses were performed in SAP2000 by using characteristic material properties 
for reinforcing steel and concrete, and the model described in Section 7.3.4.2. 

For a given damage state, the fragility curve defines the conditional probability that the damage 
state be equaled or exceeded as a function of an intensity measure (IM). Following the work 
carried out by Shinozuka et al. (Shinozuka et al. 2000), the intensity measure considered in this 
study was the peak ground acceleration (PGA). The strong ground motion time histories were 
scaled to specific PGAs. The PGA ranged from 0.05g to 0.8g in increments of 0.1g. (e.g. 0.05, 
0.1, 0.2… 0.8g). For each group of PGA the mean and the mean ± 1σ (standard deviation) was 
calculated. This process generated three elastic acceleration response spectra, and consequently 
three spectral displacements were determined by intersecting the capacity spectrum with the 
demand spectrum. The displacement demands determined from this process are depicted in 
Figure 8.3 and Figure 8.4 for the as-built RC bridge bent and retrofitted bent, respectively. Since 
the distribution of spectral displacement was not symmetric, different standard deviations (σ+ 
and σ-) were determined. 

In this study the displacement ductility was determined by dividing the spectral displacement by 
the equivalent spectral displacement at yield. Thus, the displacement ductility has mean  and 
standard deviation, σ, redefined as	√ ∙ . 

 

Figure 8.3: Performance displacement of as-built RC bridge bent 
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Figure 8.4: Performance displacement of retrofitted RC bridge bent 

The following equation defines the fragility curve. 

   















c
PGAP d




 ln
1

1    (8.2) 

Where, Φ is the standardized normal distribution function, µd is the displacement demand 
ductility, µ is the displacement demand capacity shown in Table 8.1, ξ and c are the standard 
deviations and the mean values of the corresponding normal distribution. As proposed by 
Shinozuka et al. (Shinozuka et al. 2000), the standard deviation ξ and the mean  at each PGA 
can be obtained from Eq. (8.3) and (8.4)  

  









2
exp 

2 cd
    (8-1) 

      1exp 222   d     (8-2) 

The probability of exceedance for the selected damage states is depicted in Figure 8.5 and Figure 
8.7 for the as-built RC bent and its retrofitted condition, respectively. It is worth noting, that the 
displacement ductility for the retrofitted case was performed with respect to the yield 
displacement of the as-built bent instead of the yield displacement of the BRB. 

Median values and dispersion for each damage state are shown in Table 8.2 and Table 8.3 for the 
as-built and retrofitted bent, respectively. Comparison of the median values for the as-built state 
to the retrofitted state is shown in Figure 8.9. 

As can be observed in the figures, the retrofitted state presents a reduced probability of damage 
for all the damage states as compared to the as-built condition. Moreover, the median PGA 
value, which represents a probability of exceedance of 50%, for the retrofitted bent is more than 
twice than the one for the as-built bent. This result implies, as expected, the retrofitted bridge 
bent is less vulnerable than the as-built bent. 
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        (a)       (b) 

 
        (c)       (d) 

Figure 8.5: Fragility curves for representative as-built RC bridge bent for damage state: (a) 
Slight, (b) Moderate, (c) Extensive, (d) Collapse. 

 

 

Figure 8.6: Fragility curves for representative as-built RC bridge bent. 
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        (a)       (b) 

 
        (a)       (b) 

Figure 8.7: Fragility curves for retrofitted RC bridge bent (deterministic) for damage state: (a) 
Slight, (b) Moderate, (c) Extensive, (d) Collapse. 
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Figure 8.8: Fragility curves for retrofitted RC bridge bent. 

 Table 8.2: Fragility curves values for representative RC bridge bent 

Parameter 
Damage States 

Slight Moderate Extensive Collapse 
Median 0.18 0.22 0.27 0.48 

Dispersion 0.38 0.30 0.31 0.38 
 

 Table 8.3: Fragility curves values for retrofitted RC bridge bent 

Parameter 
Damage States 

Slight Moderate Extensive Collapse 
Median 0.42 0.46 0.57 1.1 

Dispersion 0.36 0.34 0.31 0.55 
 

 

Figure 8.9: Comparison of median values of PGA for representative RC bridge bent 
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8.5 SUMMARY 

Fragility curves for a seismically deficient RC bridge bent and the bent retrofitted with buckling 
restrained braces were developed. The methodology used for the development of the fragility 
curves involved the use of 30 subduction zone ground motions and the use of 2D nonlinear 
analytical models. The analytical method used in the study was the nonlinear static analysis 
(pushover) following the study carried out by Shinozuka et al. (Shinozuka 2000). This method 
was selected due to its simplicity and the good agreement between the experimental results 
shown in a previous chapter and the analytical results computed by means of pushover analysis. 
Through the process, the impact of the retrofit measure and the vulnerability of the as built 
bridge bent was evaluated. 

The numerical results showed that the representative as-built bridge bent is more susceptible to 
subduction zone ground motions as compared to the response of the RC bent retrofitted with 
buckling restrained braces. As a result, the analyses of the fragility curves revealed the 
effectiveness of the proposed retrofit measure in mitigating probable damage undergo by the 
structure during a major seismic event. The fragility curves and the retrofit measure as presented 
in this study aim to improve the criteria for retrofitting prioritization, estimation of potential 
losses and help with the decision of selecting a suitable retrofit measure in areas prone to 
subduction zone mega earthquakes.  

The authors recognize the need for more research in the assessment of fragility by further 
studying the use of different bridge bent models with variable geometry and material properties. 
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9.0 CONCLUSIONS 

9.1 CONCLUSION 

The analysis of strong ground motions led to the conclusion that for all short and medium period 
structures (T<1.0s), subduction earthquakes produced more cumulative displacement demands 
than crustal earthquakes. For long period structures (T>1.0s) the results showed that the 
characteristics of the ground motion and fault itself affect the cumulative demand more than 
magnitude or acceleration content. Moreover, the records from the Maule earthquake produced 
always a 200% more demand that the crustal ground motions used in the study. Other measures 
of demand such as, acceleration spectra, duration of strong shaking, and residual displacement 
suggested that the Tohoku 1 ground motion set, which had the higher PGA values, would 
produce the highest demand. 

Three hysteretic behaviors, namely, bilinear, elastic non-linear and degrading were analyzed. A 
bilinear model was utilized to represent steel components behavior, an elastic non-linear model 
was included to represent structures that display rocking behavior during earthquakes, as the 
benefits of utilizing rocking motion in structures are becoming more widely acknowledged and 
understood, and a deterioration model was included to represent reinforced concrete structures. 
Comparisons of the cumulative demand between the three distinct numerical models showed that 
the degrading model presented 500% more demand than the other models. This result suggests 
that reinforced concrete structures would undergo more cumulative demand than other structures. 
Thus, deficient RC bridge substructures that are susceptible to crustal earthquakes would be even 
more susceptible to subduction zone demands. 

Quasi-static loading protocols were developed to represent the increase of cumulative inelastic 
demands in reinforced concrete structure. The inelastic time history results from the degrading 
numerical model in conjunction with the simplified rainflow counting procedure were used for 
the development of the protocols. The proposed loading protocols include a larger number of 
small amplitude inelastic cycles as compared to conventional protocols, revealing that 
conventional loading protocols commonly used in experimental testing tend to impose 
unrepresentative drift demands through imposing numerous large inelastic reversals on the 
component. Despite the higher number of large inelastic cycles, the overall normalized 
cumulative plastic displacement demands were similar when compared to the proposed 
protocols.  

A representative pre-1970 lightly reinforced and lap-spliced bridge column was studied to 
observe the effect of the proposed protocols on the behavior of reinforced concrete bridge 
columns. Experimental results of deficient square RC columns showed that the proposed 
subduction protocols influenced the response of reinforced concrete columns due to an increase 
in the overall number of inelastic cycles. This influence in response was observed in a reduced 
displacement capacity and strength resistance of the column subjected to one of the subduction 
protocols as compared to a conventional protocol. The assessment of RC bridge columns through 
representative testing load protocols would play a key role in the future establishment of limit 
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states, failure modes and acceptance criteria to be applied in the design of bridge columns and 
should be considered when megathrust subduction earthquake hazard affects the design criteria. 

The design implementation of buckling restrained braces as a transverse direction retrofit 
measure for reinforced concrete multi-column bridge bents was presented through 4 main steps, 
which are assessment of the as-built bent, BRB design, design of connections and capacity 
check. The limit states for the connection were also outlined. The design concept aims to 
concentrate all the induced energy during an earthquake event in disposable elements, while the 
reinforced concrete bent behavior is essentially in the elastic range. Based on this retrofit 
strategy, a case study of a representative bridge found in Oregon was discussed. The numerical 
results showed that by implementing buckling restrained braces, the retrofitted bent was 
significantly stiffer than conventionally retrofitted and yet provided for ductile response without 
significant damage to the concrete elements and could be a suitable retrofit measure for 
successfully achieving performance based dual-level design approaches. Even though, the 
proposed design implementation was developed for a diagonal configuration in mind, its 
application can be extended to other cases. 

The experimental results of seismic performances of seismically deficient bridge bents retrofitted 
using buckling restrained braces in a diagonal configuration. Retrofitted and unretrofitted cases 
were tested using cyclic loading protocols representative of the displacement demands in RC 
bridge bents subjected to subduction zone earthquakes. The retrofitted RC bridge bent was 
designed to perform elastically or with minor inelastic excursions within the original bent 
throughout the different seismic hazard design levels. Two BRB designs were considered in the 
study in an effort to assess the influence of BRB stiffness on the overall structural performance. 
A novel gusset plate to RC bent connection was used, in which the gusset plates were directly 
connected to the horizontal RC elements without interfering with the columns. The results of 
these large-scale experiments successfully demonstrated the effectiveness of utilizing buckling 
restrained braces for achieving high displacement ductility of the retrofitted structure, while also 
controlling the damage of the existing vulnerable reinforced concrete bent up to the design 
performance levels. Further, the experimental results showed that the BRB retrofit measure can 
achieve operational performance levels under both design levels. No damage was observed in the 
connection regions of the brace throughout the loading history, leaving the potential for 
replaceability of the sacrificial BRB element. The potential for improving the overall seismic 
behavior and the design performance levels with BRBs offers bridge design professionals a 
viable method for performance driven retrofit of multi-column reinforced concrete bridge bents.  

The experimental results also indicated that despite the detailing deficiencies of the square RC 
bridge column and the multi-column RC bridge bent built before 1970 in the Pacific Northwest, 
the cyclic response of the columns and the unretrofitted bent exhibited moderately ductile 
performance. The moderately ductile performance is likely a result of a relatively long lap splice 
length and low axial column loads. 

Fragility curves that were developed by using nonlinear static analysis showed that the 
representative as-built bridge bent is more susceptible to subduction zone ground motions as 
compared to the response of the RC bent retrofitted with buckling restrained braces. As a result, 
the analyses of the fragility curves revealed the effectiveness of the proposed retrofit measure in 
mitigating probable damage undergo by the structure during a major seismic event. The fragility 
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curves and the retrofit measure as presented in this study aim to improve the criteria for 
retrofitting prioritization, estimation of potential losses and help with the decision of selecting a 
suitable retrofit measure in areas prone to subduction zone mega earthquakes. 

9.2 FUTURE WORK 

The implementation and experimental validation of buckling restrained braces as retrofit 
measure for RC bridges was the primary outcome of this study. Future research on the 
implementation of buckling restrained braces as seismic retrofit of multi-column bridge bent and 
on the field of retrofit measures considering subduction zone earthquakes would be very 
beneficial and is summarized below.  

 Quasi-static loading protocols were utilized in the experimental part of this project. 
Dynamic or Pseudo-dynamic tests should be conducted to further validate the 
proposed loading protocols and the proposed retrofit measure. 

 More case studies with different configurations should be analyzed in order to broad 
the applicability of the BRB system, and to assess the effect of the retrofit measure by 
using different BRB configurations.  

 Impact of the implementation of BRB on landscape, issues with debris collection and 
long term effects, such as corrosion, should be investigated.  

 Different connections between gusset plate and concrete should be analytically and 
experimentally studied to ensure satisfactory seismic performance. 

 Comparisons between the retrofit measure presented in this report and others 
currently available in the market should be performed. Cost effectiveness should be 
included in such analysis. 

 Experimental studies are needed to validate other structural fuses such as the 
eccentrically braced frame system that was briefly discussed in this report. 

 The models in this study assumed rigid footings and pile-footing interaction was not 
considered. Soil and liquefaction effects should be incorporated into the models. 

 Fragility curves can be improved by further studying the use of different bridge bent 
models with variable geometry and material properties, and also by performing 
incremental dynamic analysis.
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APPENDIX A 

 

EARTHQUAKE CHARACTERISTICS 

 

The crustal earthquakes from the FEMA 695 far-field record set were chosen as the 
representative crustal ground motion set in this study. The crustal ground motions along with 
their general characteristic are summarized in Table A.1 

Table A-1: Crustal Ground Motions  
Earthquake Station M Site 

Class 
Dist. To 

Epicenter (km) 
PGAx 

(g) 
PGAy 

(g) 
Loma Prieta Gilroy Array #3 6.9 D 31 0.56 0.37 

Cape Mendocino Rio Dell Overpass 7.0 D 23 0.39 0.55 
Loma Prieta Capitola 6.9 D 10 0.53 0.44 
Northridge Beverly Hills - Mulhol 6.7 D 13 0.42 - 

Kobe, Japan Nishi-Akashi 6.9 C 9 0.51 0.50 
Chi-Chi, Taiwan TCU045 7.6 C 78 0.47 0.51 

Northridge Canyon Country-WLC 6.7 D 27 0.41 0.48 
Superstition Hills Poe Road (temp) 6.5 D 11 0.45 0.30 

Landers Coolwater 7.3 D 82 0.28 0.42 
Imperial Valley El Centro Array #11 6.5 D 29 0.36 0.38 
Kocaeli, Turkey Duzce 7.5 D 98 0.31 0.36 

Superstition Hills El Centro Imp. Co. 6.5 D 36 0.36 0.26 
Imperial Valley Delta 6.5 D 34 0.24 0.35 

Friuli, Italy Tolmezzo 6.5 C 20 0.35 0.31 
Hector Mine Hector 7.1 C 27 0.27 0.34 
Kobe, Japan Shin-Osaka 6.9 D 46 0.24 0.21 

Landers Yermo Fire Station 7.3 D 86 0.24 0.15 
Kocaeli, Turkey Arcelik 7.5 C 54 0.22 0.15 
San Fernando LA - Hollywood 6.6 D 40 0.21 0.17 

 

The subduction zone ground motion sets used in this study were chosen from the 1985 
Valparaiso (COSMOS), 2007 Sumatra (COSMOS), 2010 Maule (U. Chile), and 2011 Tohoku 
(K-Net) earthquakes with distances to the epicenter greater than 100 km to reduce the number of 
records and ensure far field response. The subduction ground motions along with their general 
characteristic are summarized in Table A-2. 
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Table A-2: Subduction Ground Motions  
Earthquake Station Site Class Dist. To Epicenter (km) PGAx (g) PGAy (g) 

M
au

le
, M

=
8.

8 

Hualane C 195 0.69 0.43 
Santiago Maipu C 381 0.49 0.56 

Llolleo D 331 0.33 0.56 
Curico C 232 0.41 0.47 
Talca C 348 0.47 0.42 

Papudo C 404 0.30 0.42 
Vina del Mar el Salto D 391 - 0.35 

Matanzas C 286 0.34 0.29 
Vina del Mar Centro D 394 0.33 0.22 

Santiago Centro C 393 0.21 0.31 
Valparaiso UTFSM B 391 0.13 0.30 

StgoPenalolen C/D 393 0.29 0.30 
StgoPuentealto C 386 0.27 0.27 

Valparaiso Almendral C/D 391 0.22 0.27 
Santiago La Florida C 391 0.13 0.19 

Valdivia C/D 394 0.13 0.09 

T
oh

ok
u2

, M
=

9.
0 

Tohwa D 152 0.81 0.58 
Okhuma D 184 0.70 - 
Toyosato D 151 0.66 0.58 
Kashima D 308 0.66 0.50 

Nakaminato D 279 - 0.56 
Toride D 349 0.53 0.48 
Mooka D 312 0.43 0.42 
Aisari D 200 0.40 0.32 
Iwaki D 206 0.30 0.38 

Kiryuh D 365 0.36 0.29 
Kakuda E 183 0.36 - 
Tsukuba D 330 - 0.34 

Fukushima D 213 0.30 0.33 
Minamidohri E 369 0.20 0.26 

Inage D 369 0.21 0.24 
Mizue N/A 376 0.16 0.22 
Ohta D 370 0.21 0.21 

Serinuma D 316 0.19 0.18 

T
oh

ok
u1

, M
=

9.
0 

Tsukidate D 175 1.29 - 
Shiogama D 163 2.01 0.77 

Hitachi D 258 1.21 - 
Sendai D 170 1.00 - 
Hokota D 301 1.09 1.38 

Shirakawa D 259 0.97 1.32 
Ohmiya D 277 1.03 1.31 
Motegi D 294 - 0.73 
Imaichi D 317 1.21 1.04 
Hirono D 190 0.90 1.14 

Kohriyama D 234 1.09 0.76 
Sakura D 353 0.50 1.06 

Funehiki D 215 0.75 1.03 
Ichinoseki C 178 0.87 1.02 
Kasama D 301 0.61 - 
Oshika B 121 0.70 0.94 
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APPENDIX B 

 

SCRIPTING PROCEDURE USED FOR NUMERICAL 
ANALYSIS 

 

All analysis was conducted using OpenSees and a series of scripts. The process was broken 
down into several scripts for ease of modification for various SDOF systems, earthquakes, or 
desired output, and is described below by defining the functions of each script. A schematic view 
of the process follows in Figure A-2.1. 

 Full Analysis – defines the following parameters and calls on Inelastic Spectra and 
Cumulative Displacement. 

o Ground motions 

o Ductility levels 

o Degree of damping 

o Analysis time step and length 

o Period step and range 

o SDOF systems 

 Inelastic Spectra – calls on Elastic Spectra and Inelastic Analysis, then calculates 
inelastic spectra. 

 Elastic Spectra – uses the SDOF system Elastic Model to produce time history analysis 
of the desired earthquake(s) at each ductility level and period in the defined range. 
Maximum values at each period are found to form the spectra. 

 Inelastic Analysis – uses results of Elastic Spectra to increase the efficiency of the 
iterative process (described in the body of the paper) required to reach the desired 
ductility level, then calls on the SDOF system that was defined in Full Analysis. 
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 SDOF Systems – were defined so that the parameters varied with yield force to maintain 
the integrity of the models at each period and included Bilinear Model, Elastic Nonlinear 
Model, and Degrading Model. Parameters are more fully defined in Appendix B. 

 Cumulative Displacement – calculated the cumulative displacement and residual 
displacement for at each period of analysis. 

 
Figure B-1: Scripts used in analysis procedure 

Scripts being called 
Results being used  

Full Analysis 

Inelastic Spectra Cumulative 
Displacement 

Elastic Spectra Inelastic Spectra 

Elastic Model Inelastic Models: 
Bilinear, Elastic Nonlinear, or 

Degrading 
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APPENDIX C 

 

DEVELOPMENT OF THE NUMERICAL MODELS 

 

The hysteretic models were defined as one dimensional SDOF systems using different uniaxial 
material types. Each material was assigned to a zero length element connecting two nodes, one 
free and one fixed. In addition to the strength deteriorating material used to describe the 
degrading model, OpenSees materials Hardening and ElasticBilin were used to describe the 
bilinear and elastic nonlinear models, respectively. Parameters used to define each of these 
models are shown in Table C-1. 

Table C-1: ElasticBilin and Hardening Material Parameters 
ELASTICBILIN HARDENING 

OpenSees 
Variable 

Defined 
OpenSees 
Variable 

Defined 

EP1 k = 
⁄

 E k = 
⁄

 

EP2 0.05k sigmaY fy 
epsP2 /  H_iso 0.05k(1-0.05) 

  H_kin 0.0 

 

Analysis of a degrading system in addition to the more simple bilinear and elastic nonlinear 
systems was deemed necessary to produce results of broader applicability. Several uniaxial 
materials with degrading properties were available in OpenSees. To determine which was most 
appropriate for the objectives of this study, a general hysteretic shape was chosen. Then the 
shape was confirmed and specific parameters calibrated based on experimental data. 

Because there are a wide variety of structures and connections which display varying degrees of 
strength and stiffness deterioration, calibrating the model to experimental data required choosing 
a hysteretic shape which was at least somewhat structure specific. As this research was a 
precursor to experimental testing of retrofitted reinforced column bridge piers, a shape was 
chosen which resembled the type of behavior expected in such structures, but could also be 
extended to represent similarly behaving structures. FEMA 440A utilized several general 
hysteretic shapes to study the effects of strength and stiffness degradation in structures. Model 
3a, representative of ductile moment frame behavior, was chosen as the shape to most likely 
characterize the behavior of a retrofitted concrete bridge pier, and the modified Ibarra-Medina-
Krawinkler deterioration model with peak-oriented hysteretic response was the OpenSees 
material with the most similar hysteretic behavior. 
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The capacity boundary of the degrading model was defined based on FEMA 440A model 3a. 
Experimental data was needed to confirm the degree of pinching in the hysteresis, as well as to 
calibrate the cyclic deterioration parameters. The results of over 400 cyclic tests of reinforced 
concrete columns were available in the PEER Structural Performance Database. Force 
displacement data was found for columns of similar dimensions, longitudinal reinforcement 
ratio, and transverse reinforcement ratio to the experimental column related to this study. 
Graphing results for several of the columns showed the degree of pinching inherent in the chosen 
degrading model to be adequate. Experimental results are compared to the degrading model 
under the same loading protocol as shown in Figure C-1. 

Table C-2: Column Properties 
Column Type Span to Depth Ratio Dimensions (mm) Axial Load Ratio 

Lehman 415 Spiral 4  d=609.6 0.072 

Henry 415p Spiral 4 d=609.6 0.12 

Kowalsky and Moyer 1 Spiral 5.33 d=457.2 (octagonal) 0.041 

Zahn 7 Rect 4 400x400 0.223 

Column Long. Reinf. ρl Transverse Reinf. ρt 

Lehman 415 22-15.9mm 0.0149 6.4mm @ 31.8mm 0.007 

Henry 415p 22-15.9mm 0.0149 6.4mm @ 31.8mm 0.007 

Kowalsky and Moyer 1 12-19mm 0.0198 9.5mm @ 76.2mm 0.0092 

Zahn 7 12-16mm 0.0151 10mm @ 117mm 0.016 
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Figure C-1: Experimental column results vs. degrading model 
The same experimental results showed the degree of cyclic deterioration to be inconsistent and at 
least somewhat dependent on the loading protocol which varied. Due to the inconsistencies and 
because strength deterioration existed in the model as a part of the hysteretic shape, the cyclic 
deterioration parameters were defined so that no noticeable cyclic deterioration existed. This also 
aided in simplifying the numerical analysis to a certain degree. Parameters for the degrading 
model at each ductility level are shown in Table C-3.  

  

a.) Lehman 415 b.) Henry 415p 

c.) Kowalsky and Moyer 1 d.) Zahn 7 
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Table C-3: ModIMKPeakOriented Material Parameters 
OpenSees Variable Ductility 2 Ductility 4 Ductility 8 

K0 k = 
⁄

 k = 
⁄

 k = 
⁄

 

As_Plus 0.0167 0.0167 0.0167 
As_Neg 0.0167 0.0167 0.0167 
My_Plus fy fy fy 
My_Neg -fy -fy -fy 

Lambda_S 50fy 100fy 200fy 
Lambda_C 50fy 100fy 200fy 
Lambda_A 50fy 100fy 200fy 
Lambda_K 50fy 100fy 200fy 

c_S 1.0 1.0 1.0 
c_C 1.0 1.0 1.0 
c_A 1.0 1.0 1.0 
c_K 1.0 1.0 1.0 

theta_p_Plus 1.001 ⁄⁄  2.44 ⁄⁄  5.32 ⁄⁄  
theta_p_Neg 1.001 ⁄⁄  2.44 ⁄⁄  5.32 ⁄⁄  
theta_pc_Plus 2.5 ⁄  3.4 ⁄  3.56 ⁄  
theta_pc_Neg 2.5 ⁄  3.4 ⁄  3.56 ⁄  

Res_Pos 0.8 0.8 0.8 
Res_Neg 0.8 0.8 0.8 

theta_u_Plus 100,000 ⁄  100,000 ⁄  100,000 ⁄  
theta_u_Neg 100,000 ⁄  100,000 ⁄  100,000 ⁄  

D_Plus 1.0 1.0 1.0 
D_Neg 1.0 1.0 1.0 
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APPENDIX D 

 

RESIDUAL DISPLACEMENT UPPER BOUND 

 

Each set of NRD spectra approached an upper bound that was not apparent when analyzing only 
the mean of each set. For the bilinear without hardening model, the value of the upper bound was 
the ductility level minus one. The degrading and bilinear with hardening models approached 
similar upper bounds. The exact upper bound value for each model can be explained by the 
hysteretic behavior when one assumes each SDOF system will be approximately “centered” at 
the end of each time history analysis. Figure D-1 along with the equations found in explains the 
behavior that results in the upper bound value. As an example, the NRD spectra are shown for 
the Tohoku2 set of the bilinear model in Figure D-2. 
 

 
Figure D-1: Hysteretic behavior explaining NRD upper bound 
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Figure D-2: Tohoku2 Bilinear model NRD 

Table D-1: NRD Upper Bound 
Bilinear Model Degrading Model Bilinear with Hardening Model 

 

μ → μ   

∴ 	 μ  
            μ 1  

 

∴ 	 μ 1 

0.8  

μ → μ   

∴ 	 μ 0.8  
            μ 0.8  

 

∴ μ 0.8 

* 

μ → μ   

∴ 	 μ 	  
            µ-λ) 

 

∴ μ  
*λ can be calculated for each ductility value using the above figure. 
λ=1.05, 1.15, 1.35 for ductility values 2, 4, 8, respectively. 

a.) Ductility 2 b.) Ductility 4

c.) Ductility 8 
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ADDITIONAL RESULTS FROM CHAPTER 2 

 

 

Figure E-1: Mean inelastic acceleration spectra by record set 

a.) Crustal, Ductility 2 

d.) Maule Ductility 2 

g.) Tohoku1, Ductility 2 

j.) Tohoku2, Ductility 2 

b.) Crustal, Ductility 4

e.) Maule Ductility 4

h.) Tohoku1, Ductility 4

k.) Tohoku2, Ductility 4

c.) Crustal, Ductility 8

f.) Maule Ductility 8

i.) Tohoku1, Ductility 8

l.) Tohoku2, Ductility 8
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Figure E-2: Mean NCPD spectra by record set 

a.) Crustal, Ductility 2 

d.) Maule Ductility 2 

g.) Tohoku1, Ductility 2 

j.) Tohoku2, Ductility 2 

b.) Crustal, Ductility 4

e.) Maule Ductility 4

h.) Tohoku1, Ductility 4

k.) Tohoku2, Ductility 4

c.) Crustal, Ductility 8

f.) Maule Ductility 8

i.) Tohoku1, Ductility 8

l.) Tohoku2, Ductility 8
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Figure E-3: Mean NRD spectra by record set 

a.) Crustal, Ductility 2 

d.) Maule Ductility 2 

g.) Tohoku1, Ductility 2 

j.) Tohoku2, Ductility 2 

b.) Crustal, Ductility 4

e.) Maule Ductility 4

h.) Tohoku1, Ductility 4

k.) Tohoku2, Ductility 4

c.) Crustal, Ductility 8

f.) Maule Ductility 8

i.) Tohoku1, Ductility 8

l.) Tohoku2, Ductility 8
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APPENDIX F 

 

CYCLIC LOADING PROTOCOLS CONSIDERING ALL 
EXCURSIONS 

 

This appendix shows the loading protocols that were developed considering all the inelastic 
excursions in case experimentalists decide those would be more appropriate for their application. 
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Figure F-1: Loading protocols considering all excursions for component ductilities (µ) =2, 4 
and 8.                                                      (a) T = 0.5 sec, (b) T = 1.0 sec, (c) T = 2.0 sec.  

Table F-1: Loading protocols utilizing all excursions 

Cycle 
Amplitude 

xδyield 

Number of Inelastic Cycles 

Ductility (μ = 4) Ductility (μ = 8) 

T = 0.5s T = 1.0s T = 2.0s T = 0.5s T = 1.0s T = 2.0s 

1.0 4 3 2 8 4 3 

1.1 4 3 2 6 4 3 

1.2 4 3 2 6 4 2 

1.3 3 2 2 4 3 2 

1.4 2 1 1 3 3 2 

1.5 2 1 1 3 2 1 

1.6 2 1 1 3 2 1 

1.7 1 1 - 3 2 1 

1.8 1 1 1 2 2 1 

1.9 1 1 - 2 1 1 

2.0 1 1 1 2 1 1 

2.1 1 - - 2 1 1 

2.2 - 1 - 1 1 1 

2.3 1 - - 1 1 - 

2.4 - - - 1 1 1 

2.5 1 1 1 1 1 - 

2.6 - - - 1 1 1 

2.7 - - - 1 - - 

2.8 - - - 1 1 - 

2.9 - - - 1 - - 

3.0 1 1 1 1 1 1 

3.2 - - - 1 1 - 

3.5 - - - 1 1 1 

4.0 1 1 1 1 1 1 

4.5    1 - 1 

5.0    1 1 1 

5.5    - - - 

6.0    1 1 1 

6.5    - - - 

7.0    - - 1 

8.0    1 1 1 
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APPENDIX G 

 

MOMENT-CURVATURE ANALYSIS OF REPRESENTATIVE 
SQUARE COLUMN 

 

Column 

Cross Section 

Width x Depth = 24 x 24 in 

f’c= 3.5 [ksi], f’ce= 4.5 [ksi], fy = 60 [ksi], fye=68 [Ksi] 

Longitudinal Reinforcement: #10 in each corner 

Transverse Reinforcement: #3@12 [in] 

Axial Load: 160 [kip] 

Flexural Capacity 

AASHTO specifications (Concrete Modeling): Confined concrete should be computed using 
Mander’s Model. (This formula is based at the first hoop fracture). Maximum strain from 
Priestley’s formula was considered as 0.0109. 

Moment Curvature: 
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Figure G-1: Moment-curvature curve for square column 

 

From the moment-curvature analysis can be extracted the following data:  

Table G-1: Results from moment-curvature analysis  
ϕy 0.15476 (1/in) x 10-3 
ϕy (idealized) 0.17429 (1/in) x 10-3 
ϕu 2.376 (1/in) x 10-3 
My 4712.69 Kip-in 
Mu 5472.24 Kip-in 
Mp 5307.39 Kip-in 

Neutral axis: 
0.0109
0.002376

4.59	  

Plastic Hinge Length: 

0.08 0.15 0.3  

0.08 112 0.15 68 1.27 21.9 0.3 68 1.27 25.91 

∴ 25.91	  

Plastic curvature:  

0.0022/  

Plastic rotation: 

0.057	  

Yield displacement:  

∆
3

0.73	 . 

Plastic displacement: 

∆ 0.5 5.65	  

Ultimate displacement 

∆ ∆ ∆ 6.38	  

Column displacement ductility: 

∆
∆

8		 
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Shear strength  

Initial Shear strength: 

 

" 2 0.11 68 20
12

∗
1

0.597
42	  

1.6 . 1.6 ∗
2 0.11
21 12 ∗ 0.8 ∗ 24

1 4 ∗ 1.27

.

0.6 

160
24 4.66
2 ∗ 112

14	  

3.5 3.5√4500 0.8 ∗ 24 108	  

42 14 108 164	  

Final Shear strength: 

 

0.5 0.5√4500 0.8 ∗ 24 15	  

71	  

Shear demand in flexion:  

5307
112

47	  

0.85  

This result implies that the column rotational capacity is limited by flexure and not shear. 
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APPENDIX H 

 

ADDITIONAL EXPERIMENTAL RESULTS FROM CHAPTER 4 

 

A few representative strain gage measurements are illustrated below. The location of the strain 
gages is depicted in Error! Reference source not found.. 

 

 

Figure H-1: Strain gage measurements in Column A-CO 
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 Figure H-2: Strain gage measurements in Column A-SU 
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APPENDIX I 

 

DRAWINGS AND DESIGN OF CONNECTION  

 

This appendix shows the details for the experimental program of a half-scale RC bridge bent 
retrofitted using Buckling Restrained Braces (BRBs). 

The general layout for the retrofitted RC bent and the Buckling Restrained Braces is shown 
below. 

 

Figure I-1: Layout retrofitted bent (Model 1) 
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Figure I-2: Layout retrofitted bent (Model 2) 

 

Figure I-3: Example of BRB Layout (Model 1) 

Design of Top Bolted Connection 
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BRB Properties: 

                  

                           

            

Bolts:  

Try 7/8" bolts ASTM 325.  Diameter:  

Dimension of hole:  

Area:  

Strength per bolt: (in double shear) 

Shear:  

 

 

Tension: 

 

 

 

Slip - Critical: 

FyBRB 44.2ksi Ry 1.1 ABRB 1.2in
2

 1 48.74

E 29000ksi  1.45  1.3
 1



180
 0.851 rad

Pad max  Ry FyBRB ABRB Ry FyBRB ABRB  Pad 84.599kip

d
7

8
in

h d
1

16
in 0.937 in

Abolt 
d

2

4
 0.601 in

2


R nv 0.75 54 ksi Abolt 24.353kip

Nboltv

Pad

R nv 2
1.737

Fnt 90ksi

Structural Materials: 
* BRB Steel Core: ASTM A36. Fy

BRB = 44.2 ksi. Coupon test required 
* Gusset Plates: ASTM A572, Gr. 50. Fymin = 50 ksi, Fu = 65 ksi 
* Weld electrodes: E70XX 
* High Strength Bolts: Group A (ASTM A325) Fnt = 90 ksi, Fnv = 54 ksi. Standard Holes 
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  Class A surface (the smallest slip coefficient) 

                                            AISC2011 TableJ3.1:  

                 

 

Try 6 bolts 7/8"                    > Pad        (OK) 

Gusset Plate Design:  (AISC, Steel Construction Manual 2011) 

ASTM A572 Gr50                      

Thickness (try):  

Bearing:               use s = 3in                                    

 

                      

 

Upper Limit:         

Using 6 bolts:             

Block shear strength: 

          (for gusset plate) 

          

 

 > Pad        (OK) 

Whitmore section: 

 0.3

Du 1.13 hf 1 Tb 39kip

ns 2 Rnslip  Du hf Tb ns 26.442kip

Nboltslip

Pad

Rnslip
3.199

R nslip 1 6 Rnslip 158.652kip

Fy 50ksi Fu 65ksi

t
5

8
in

sp 3 d 2.625 in sp1 3in  bearing 0.75

le 1.5in

lcedge le
h

2
 1.031 in lc sp1 h 2.062in Rnbedge 1.2lcedge t Fu 50.273kip

Rnbear 1.2lc t Fu 100.547kip

Rnupper 2.4 d t Fu 85.313kip

R nbearing 2 min Rnbedge Rnupper  4 min Rnbear Rnupper  441.797kip

h1 d
1

8
in 1in Ubs 1

Agv 2 t 2 sp1 le  9.375in
2

 Anv 2 t 2 sp1 le 2.5 h1  6.25in
2



Ant t le 2 h1  1.25in
2



R nbs 0.75 min 0.6 Fu Anv Ubs Fu Ant  0.6 Fy Agv Ubs Fu Ant   243.75kip
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Tension on the gross area: 

                   > Pad        (OK) 

Tension on the net area: 

             For four fasteners in the direction of loading 

 > Pad        (OK) 

Buckling Strength: (compression)              AISC J4.4 and E3 

                             

                                           

                             

 > Pad        (OK) 

 

Buckling of free edge: 

 (Maximum length of free edge) 

 

 

 

 

Design of Anchor Rods 

lw 2 2 2 6 tan


6












in 10.928in

Ag lw t 6.83in
2

 P ngross 0.9 Fy Ag 307.356kip

U 0.8

P nnet 0.75 Fu t lw 2 h1  272.031kip

4.71
E

Fy
 113.432

Area lw t 6.83in
2

 Inertia lw
t
3

12
 0.222in

4


r
Inertia

Area
0.18in lb 9.5in k 1

k lb

r
52.654

Fe


2
E

k
lb

r










2
103.236ksi Fcr 0.658

Fy

Fe
Fy 40.825ksi

R nc 0.9 Fcr Area 250.959kip

Lfg 0.75
E

Fy
 t 11.289in
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The adjusted strength of the BRB (Pad) with the corresponding free body diagram were utilized 
to design the anchor rods as depicted in Figure I-4. The uniform force method was used to design 
the gusset plate to concrete connection. (AISC Manual Part 13) 

 

 

   (a)      (b) 

 

(c) 

Figure I-4: Gusset Plates. (a) Bottom connection, (b) Top connection, (c) Free body diagram 
The anchor rods were designed using the free software “Profis” provided by Hilti as shown in 
Figure I-5. The details for the connections used in the experimental program are shown in Figure 
I-6 and Figure I-7. 
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Figure I-5: Anchor rods example for top connection 

 

 

Figure I-6: Detailing of bottom gusset plate 
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Figure I-7: Detailing of top gusset plate 



 

 
 

APPENDIX J 

ADDITIONAL EXPERIMENTAL RESULTS FROM CHAPTER 7 
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APPENDIX J 

 

ADDITIONAL EXPERIMENTAL RESULTS FROM CHAPTER 7 

 

More than 88 strain gage measurements were recorded in each test. For that reason, just a few 
representative recordings are depicted below. The figures show the lateral load vs strain. The 
location of the strain gages is shown in Error! Reference source not found.. The designation 
for the strain gages is: component-location-height-type of reinforcement. For example F1-1-6-D 
means Footing 1 at location 1 (shown in Error! Reference source not found.), 6 inches high on 
dowel reinforcing steel. C2-1-4-C means Column 2 at location 1, 4 inches high on continuous 
steel. 
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Figure J-1: Strain gage measurements (Model 1) 
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Figure J-2: Strain gage measurements (Model 2) 
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Figure J-3: Strain gage measurements (As-built bent) 

 


